

Environmental Product Declaration No 24/2014

Issuance date: 01.07.2014 Validity date: 01.07.2019

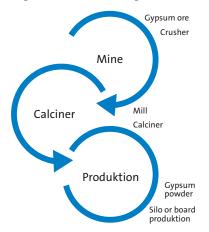
ITB is the member of The European Platform for EPD program operators.

EPD program operator

Building Research Institute (ITB), 00-611 Warsaw, Filtrowa 1 www.itb.pl; www.zb.itb.pl/epd

Manufacturer

Saint-Gobain Construction Products Polska Sp. z o.o. Rigips Office: 9 Cybernetyki St., 02-677 Warsaw Factory: Szarbków 73, 28-400 Pińczów Telephone number: +48 22 457 14 57 Fax number: +48 22 457 14 55 Internet address: www.rigips.pl E-mail address: rigips.polska@saint-gobain.com



Basic information

This declaration is the type III Environmental Product Declaration (EPD) based on EN 15804 and verified according to ISO 14025 by external auditor. It contains information about the impact of declared construction materials on environment and their aspects verified by the independent Advisory Board according to ISO 14025. Basically, a comparison or evaluation

Manufacturer and Product Information

Rigips exists on the Polish market since 1994 and is engaged in manufacturing gypsum products (from own natural stone mined); plaster - plasterboards and drywall systems: walls, shaft walls, ceilings and other building elements.

of EPD data is possible only if all the compared data were created according to EN 15804 (see point 5.3 of the norm).

Life cycle: A1-A3 modules in accordance with EN 15804 (Cradle to Gate)

The year of preparing the characteristic: 2014

Issuance date: 01.07. 2014

Validity date: 01.07.2019

Declared durability: Under normal conditions, gypsum binders have an expected service life well in excess of 60 years.

PCR: PCR-17-PL/EN 15804

Declared unit : 1 kg of gypsum stone and 1kg of gypsum dry powder

Gypsum is a material used in construction for thousands of years. This material is not only durable, easy to be handled, hygienic but also completely renewable. Gypsum is calcium sulfate dihydrate (CaSO4 2H2O) naturally occurring mineral. Gypsum ore is mined in RIGIPS open mine near (2 km) manufacturing plant in Pińczów. RIGIPS is a manufacturer of gypsum and anhydrite for further processing (dry powder products). Raw gypsum stone is reprocessed into a variety of products such as a portland cement additive, industrial and building plasters, and RIGIPS plasterboard, ceiling tiles and gypsum blocks. Natural gypsum is inert, nontoxic materials, harmless to human life in its natural state.

To produce RIGIPS plasterboard, gypsum is milled and calcined to produce calcium sulfate hemihydrates (CaSO4 1/2H2O), commonly called Stucco. Calcination occurs at approximately 120 to 150°C and 0,908 Megagrams (Mg) (1 ton) of gypsum calcines to about 0,77 Mg (0,85 ton) of stucco. In calciner, the gypsum is heated by hot combustion gas passed through flues in the kettle, and the stucco product is separated in the bug filter and finally stored in the silo. Ready for use stucco is transferred from one process to next (gypsum board and blocks production) by means of screw conveyors.

Rigips from the beginning of its operation shows continuous concern on issues related to proper working conditions, care for the environment and the highest quality of products. Result of these efforts was the implementation of:

- quality management systems based on ISO 9001
- occupational health and safety based on PN-EN 18001
- environmental protection based on ISO 14001

The mentioned systems have been integrated in 2010 into Integrated Quality Management System after audits carried out by SGS Poland Sp. z o.o., which is part of the SGS - the world leader operating in the field of control, verification, testing and certification. Rigips certificates issued by SGS Poland are accredited by United Kingdom Accreditation Service (UKAS).

Product type

Gypsum natural stone has no reference documents. This material is used as a semi-product for further gypsum production. Anhydrite binder has no reference documents. There is a kind of high burn gypsum used as a semi-product. According to EN 13279-1:2008 standard:

Standard designation	Type of application	Commercial name
Gypsum binder	for further processing, e.g. dry powder products, gypsum blocks and plasterboards	Gypsum, Rigips

Application for which the product is to be used

Natural gypsum stone, anhydrite and Stucco gypsum									
Description	dry powder								
Characteristic	 for direct use or further processing e.g. dry powder products, gypsum blocks, gypsum plasterboards etc. Anhydrite – semi-product for gypsum plasters 								
Colour	Gypsum, Anhydrite –grey								

Technical parameters

Ν	latural gypsum stone, anhydrite and Stucco gypsum
Description	Gypsum - natural
Standard designation	A1 – EN 13279-1:2008
Bulk density	850 kg/m3
Dry density	1250 kg/m ³
Reaction to fire	A1
Product literature	DoP
Manufacturing site	Szarbków 73
Description	Anhydrite binder
Standard designation	No standard reference. It is semi-product for gypsum plasters production
Bulk density	850 kg/m3
Dry density	
Reaction to fire	A1
Product literature	DoP
Manufacturing site	Szarbków 73

Allocation

First the gypsum stone is transported from mine. After that a mechanical process is started. The mechanical process consists of: stones breaking, grinding and drying in a bowl mill. Depending on mill separator speed, different graining rock is obtained and that is what determines its further use. When the gypsum stone is milled and dried the gypsum stone is dispensed

System limits

The life cycle analysis of the examined products covers A1-A3 modules (Cradle to Gate) in accordance with EN 15804+A1. Its include production, including raw materials extraction and energy provision up to the finished

Data collection period

The data for manufacture of the examined products refer to the year

Data quality

The values determined to calculate the LCIA originate from verified LCI

Assumptions and estimates

Impacts for each product stage and factory process were inventoried and calculated separately. All raw material

Databases

The data for the A1 processes come from the following databases: LCI questionnaire, Ullmann's (chemicals),

Note

Specific information on application and other actions with these products are described in detail in to calcinators where is heat treated. For various type of binders, some or all crystallization water is removed. In this way, gypsum hemihydrate (CaSO4 • ½H2O) or anhydrite binder (CaSO4 - high-burn gypsum) are obtained. Next the gypsum is pneumatically transported to the further process e.g. cardboards or gypsum blocks production. In the mixing plant gypsum

product at the factory gate. All raw materials and energy consumption inventoried in Factory and Mine were included in calculation. All inventory processes for gypsum stone mining as explosive substances, detonators, waste

2013. The life cycle assessments were prepared for Poland as reference area

RIGIPS inventory data. This data was verified by ISO auditor.

consumption, emission water used were specific. Emission into air from

WAT (explosives), Tauron (Energy) and scientific literature sources

the technical data sheet available on the producers website.

and anhydrite are blended in the mixer with different additives. The production of gypsum or anhydrite is a single line process. All impacts from mine are allocated in gypsum stone. Gypsum stone impact is allocated in dry gypsum product production as A1 module. 100% impact is allocated to one final product. All stages of production and its impacts are presented in this EPD separately.

water production and gas emissions in explosion were included. For gypsum all processes as: crushing, milling, drying, calcination, transport, and storage processes were included. Office impacts were also taken into consideration.

(officially published statistical national electricity mix for 2013).

gas heat production was estimated using formal conversion factors.

(Transport). Data quality analysis was a part of external audit.

Raw materials and energy

Table 1. Raw materials

No	Name of raw material	total used in production	used on Mg of product
	Gypsum st	one(mine)	
1	Explosives [kg] (Riohit LS, Hanal, Riobooster)	62978	0,14
2	Diesel [l]	176 657	2,97
3	Electricity [kWh]	1015000	1,93

Table 2. Energy consumption

No	Name of raw material	total used in production	used on Mg of product
	Mill and crus	hing process	
1	Electricity [kWh]	5643000	10,75
	Calci	nator	
2	Gas [kWh]	143266206	0,45

Emissions (LCI) and their impact on the environment

Table 3. Emissions into air generated during production stage A3 Table 4. Emissions into water generated during production stage A3

Air emission	Unit	Used on product kg/kg	Water emission	Unit	Total
CO ₂	kg	0,12	Water consumption	m ³	6662
SO ₂	kg	0,00001	Waste water	m ³	6662
NO _x	kg	0,0011	BOD	mg/l	19,0
		·	COD	mg/l	67,5
			Suspended matter	mg/l	36

Table 5. Waste generated in the phase of product manufacturing A3

Waste code	Unit	Total in production [Mg]	Destination		
150101	Mg	99,5	Recycling		
150102	Mg	10,47	Recycling		
170201	Mg	5,3	Energy recovery		
170407	Mg	3,94	Recycyling		
160213	Mg	0,156	Dengerous		
150110	Mg	0,43	Dengerous		
160304	Mg	0,4	Landfil		
010102	Mg	2398,5	Reuse/landfil (mine)		
190805	Mg	4,0	Landfil		
101381	Mg	705,5	Reuse/landfil		

Environmental characteristics (LCA)

Table 6. Environmental characteristic for milled gypsum stone (1kg)

En	Environmental assessment information (MND – Module not declared, MD – Module Declared, INA – Indicator Not Assessed)															
Product stage Construction Use stage Use stage						2				End o	of life		Benefits and loads beyond the system boundary			
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Use Maintenance Repair Replacement Refurbishment Operational energy use Operational water use Deconstruction demolition Maste processing Disposal					Reuse-recovery- recycling potential					
A1	A2	A3	A4	A5	B1	B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4								D		
MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental impacts: 1 kg												
Indicator	Unit	A1	A2	A3	A1-A3							
Global warming potential	[kg CO ₂ eq.]	0,002	1,53E-04	0,014	0,016							
Depletion potential of the stratospheric ozone layer	[kg CFC 11 eq.]	7,80E-10	6,50E-10	6,85E-09	8,28E-09							
Acidification potential of soil and water	[kg SO ₂ eq.]	2,23E-05	1,11E-06	1,94E-04	2,17E-04							
Eutrophication potential	[kg (PO ₄) ³ - eq.]	3,73E-06	1,96E-07	5,62E-05	6,01E-05							
Formation potential of tropospheric ozone	[kg Ethene eq.]	4,47E-07	8,12E-08	8,68E-07	1,40E-06							
Abiotic depletion potential (ADP-elements) for non-fossil resources	[kg Sb eq.]	3,39E-06	7,37E-06	3,17E-05	4,25E-05							
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	[MJ]	2,50E-03	8,40E-03	0,047	0,058							

Environmental	aspects on resou	rce use: 1 kg			
Indicator	Unit	A1	A2	A3	A1-A3
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	[M]	INA	INA	INA	INA
Use of renewable primary energy resources used as raw materials	[M]	INA	INA	INA	INA
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	2,25E-04	0,00	0,00	2,25E-04
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA
Use of non-renewable primary energy resources used as raw materials	[M]	INA	INA	INA	0,000
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[M]	0,003	8,82E-03	0,05	0,062
Use of secondary material	[kg]	0,00	0,00	0,00	0,000
Use of renewable secondary fuels	[M]	0,00	0,00	0,00	0,000
Use of non-renewable secondary fuels	[M]	0,00	0,00	0,00	0,000
Net use of fresh water	[dm³]	0,0001	0,00	0,001	0,001

Other environmental information describing waste categories: 1 kg											
Indicator	Unit	A1	A2	A3	A1-A3						
Hazardous waste disposed	[kg]	2,00E-07	0,00	0,00	2,00E-07						
Non-hazardous waste disposed	[kg]	2,00E-06	3,00E-05	7,00E-04	7,32E-04						
Radioactive waste disposed	[kg]	0,000	0,00	0,000	0,000						
Components for re-use	[kg]	0,000	0,00	0,000	0,000						
Materials for recycling	[kg]	0,000	0,00	0,002	2,29E-03						
Materials for energy recovery	[kg]	0,000	0,00	0,000	3,69E-04						
Exported energy	[MJ]	0,000	0,00	0,000	0,00						

Table 7. Environmental characteristic for gypsum (dry powder-Stucco) (1kg)

	Environmental assessment information (MND – Module not declared, MD – Module Declared, INA – Indicator Not Assessed)																
	Product stage Construction Use stage Use stage							End of life loads the s			Benefits and loads beyond the system boundary						
Manual leivoteen med	kaw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Use Maintenance Repair Replacement Refurbishment Operational energy use Use Use Use Use Use Use Use Use Use U					Reuse-recovery- recycling potential					
Α	1	A2	A3	A4	A5	B1	B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4								D		
Μ	D	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental impacts: 1 kg					
Indicator	Unit	A1	A2	A3	A1-A3
Global warming potential	[kg CO ₂ eq.]	0,016	3,79E-05	0,111	0,127
Depletion potential of the stratospheric ozone layer	[kg CFC 11 eq.]	8,28E-09	4,32E-11	9,45E-10	9,27E-09
Acidification potential of soil and water	[kg SO ₂ eq.]	2,17E-04	3,62E-07	1,23E-04	3,40E-04
Eutrophication potential	[kg (PO ₄) ³ - eq.]	6,01E-05	4,12E-08	1,39E-05	7,40E-05
Formation potential of tropospheric ozone	[kg Ethene eq.]	1,40E-06	1,53E-08	5,90E-06	7,31E-06
Abiotic depletion potential (ADP-elements) for non-fossil resources	[kg Sb eq.]	4,25E-05	1,60E-06	7,94E-04	8,38E-04
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	[MJ]	0,058	5,00E-04	1,820	1,879

Environmental aspects on resource use: 1 kg ²					
Indicator	Unit	A1	A2	A3	A1-A3
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	[M]	INA	INA	INA	INA
Use of renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	2,25E-04	0,000	0,044	0,044
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA
Use of non-renewable primary energy resources used as raw materials	[MJ]	0,000	INA	INA	INA
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	0,062	6,00E-04	1,91	1,973
Use of secondary material	[kg]	0,000	0,00	0,00	0,000
Use of renewable secondary fuels	[MJ]	0,000	0,00	0,00	0,000
Use of non-renewable secondary fuels	[MJ]	0,000	0,00	0,00	0,000
Net use of fresh water	[dm³]	0,001	0,00	0,0198	0,021

Other environmental information describing waste categories: 1 kg					
Indicator	Unit	A1	A2	A3	A1-A3
Hazardous waste disposed	[kg]	2,00E-07	0,00	0,00	2,00E-07
Non-hazardous waste disposed	[kg]	7,32E-04	1,00E-04	2,28E-03	3,12E-03
Radioactive waste disposed	[kg]	0,00	0,00	0,00	0,00
Components for re-use	[kg]	0,00	0,00	0,00	0,00
Materials for recycling	[kg]	0,00	0,00	0,00	7,28E-06
Materials for energy recovery	[kg]	0,00	0,00	0,00	0,00
Exported energy	[MJ]	0,00	0,00	0,00	0,00

Verification

The process of verification of an EPD is in accordance with EN ISO 14025, clause 8 and ISO 21930, clause 9. After verification, this EPD is valid for a 5-year-period. EPD does not have to be recalculated after 5 years, if the underlying data have not changed significantly.

The basis for LCA analysis was EN 15804					
Independent verification corresponding to ISO 14025 & 8.3.1.	X external	internal			
Verification of EPD: dr eng. Aleksander Panek (PKN KT 307 President), prof. Dariusz Heim					
LCI audit and input data verification: msc eng. Dominik Bekierski					
LCA: dr eng. Michał Piasecki					
Verification of procedures and declaration: dr eng. Halina Prejzner					

Normative references

- ISO 14025:2006, Environmental management Type III environmental declarations Principles and procedure
- ISO 21930:2007, Sustainability in building and construction Environmental declaration of building products
- ISO 14044:2006, Environmental management Life cycle assessment Requirements and guidelines
- ISO 15686-1:2000, Buildings and constructed assets Service life planning Part 1: General principles
- ISO 15686-8:2008, Buildings and constructed assets Service life planning Part 8: Reference service life
- EN 15804:2012+A1:2013, Sustainability in construction works Environmental product declarations Core rules for the product category of construction products.
- EN15942:2011, Sustainability of construction Environmental product declarations. Communication format business-to-business