

ENVERSION IN THE INPUT OF THE INTER INTER

THIN-COAT RENDERS BASED ON ORGANIC BINDERS

ITB is the member of PLATFORM * * The European platform for EPD program operators

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS

Issuance date: 10.03.2014 Validity date: 10.03.2019

EPD PROGRAM OPERATOR

BUILDING RESEARCH INSTITUTE 00-611 Warsaw, ul. Filtrowa 1 www.itb.pl

MANUFACTURER:

ATLAS spółka z o.o. 91-222 Łódź, ul. Św. Teresy 105, Poland atlas@atlas.com.pl www.atlas.com.pl

Manufacturing sites information

Zakład Produkcyjny PIOTRKÓW TRYBUNALSKI, 97-300 Piotrków Trybunalski, ul. Wronia 61/63, Poland

Zakład Produkcyjny BYDGOSZCZ, 85-758 Bydgoszcz, ul. Przemysłowa 32,, Poland

Zakład Produkcyjny DĄBROWA GÓRNICZA, 41-306 Dąbrowa Górnicza, ul. Roździeńskiego 2, Poland

> Zakład Produkcyjny SUWAŁKI, 16-400 Suwałki, Dubowo II nr 33, Poland

Wytwórnia Klejów i Zapraw Budowlanych S.A. 95-100 Zgierz, ul. Szczawińska 52A, Poland

ATLAS

THIN-COAT RENDERS BASED ON ORGANIC BINDERS

in accordance with ISO 14025:2010 and EN 15804:2012

1. BASIC INFORMATION

This declaration is the type III Environmental Product Declaration (EPD) based on EN 15804:2012 and verified according to ISO 14025. It contains information about the impact of declared construction materials on environment and their aspects verified by the independent Advisory Board according to ISO 14025. Basically, a comparison or evaluation of EPD data is possible only if all the compared data were created according to EN 15804.2012 (see point 5.3 of the norm).

Life cycle: A1-A3 modules in accordance with EN 15804 (Cradle to Gate)

The year of preparing the characteristic: 2014 Issuance date: 10.03. 2014 Validation date: 01.03.2014 Validity date: 10.03.2019 Declared durability: 50 years

2. LIFE CYCLE ASSESSMENT (LCA)

Declared unit

The declaration refers to 1 kg. System limits

The life cycle analysis of the examined products covers A1-A3 modules (Cradle to Gate) in accordance with EN 15804:2012. Its include production, including raw materials extraction and energy provision up to the finished, packed product at the factory gate. Processes whose total contribution to the final result, according to mass looked at, is less than 0.5 % was ignored.

Data collection period

The data for manufacture of the examined products refer to the year 2012. The life cycle assessments were prepared for Poland as reference area.

Data quality

The values determined to calculate the LCA originate from verified Atlas inventory data.

Assumptions and estimates

The impacts of the representative ATLAS products were aggregated using weighted average. Impacts for each product and factory were inventoried and calculated separately. Databases

The data for the processes come from the following databases: Ecoinvent, EMPA, Ullmann's, Plastic-Europe, ITB-Data, SPC.

3. PRODUCT INFORMATION

This environmental product declaration covers factory manufactured renders with organic binders according to EN 15824:2010, paste-form mixtures of one or more water-based polymer dispersions, possibly combined with silicon- or silicate-based binders, water, mineral aggregate, pigments and additives.

This environmental product declaration is valid for the following renders: Acrylic render ATLAS CERMIT Silicate render ATLAS SILKAT Silicone render ATLAS SILKON Acrylic render TYNK AKRYLOWY ATLAS Acrylic render ATLAS DEKO M/DEKO DIM Silicone-silicate render TYNK SILIKONOWO-SILIKATOWY ATLAS Silicone render TYNK SILIKONOWY ATLAS Acrylic-silicone render TYNK AKRYLOWO-SILIKONOWY ATLAS

and for the following key coats: ATLAS CERPLAST ATLAS SILKAT ASX ATLAS SILKON ANX

Renders and key coats must be applied together in accordance with the following table

Layer	Variety No. 1	Variety No. 2	Variety No. 3	Variety No. 4
Key coats	ATLAS CERPLAST	ATLAS SILKAT ASX	ATLAS SILKON ANX	ATLAS CERPLAST or ATLAS SILKON ANX
Finishing coats	ATLAS CERMIT acryl or ATLAS DEKO M/ DEKO DIM or TYNK AKRYLOWY ATLAS	ATLAS SILKAT	ATLAS SILKON or TYNK SILIKONOWY ATLAS	TYNK SILIKONOWO- SILIKATOWY ATLAS or TYNK AKRYLOWO- SILIKONOWY ATLAS

4. PRODUCT DESCRIPTION

ATLAS CERMIT acryl is factory-manufactured thin-coat render, paste form mixtures made of water-based polymer dispersion, water, lime powder, aggregate, pigments and additives. It enables a decorative surface with spotted or rustic texture. For indoor and outdoor applications. Recommend as façade plaster with the application of EPS boards and XPS boards. Recommended for façades exposed to damage and soiling – owing to the high mechanical resistance, it is an ideal render for walls at schools, workshops, stores, backup buildings, situated close to roads, factories.

ATLAS SILKAT is factory-manufactured thin-coat render, paste form mixtures made of water-glass dispersion, water, limestone, lime powder, aggregate, pigments and additives. It enables a decorative surface with spotted or rustic texture. For indoor and outdoor applications. Recommend as facade plaster with the application of EPS boards, XPS boards or mineral wool boards. Recommended for façades requiring free water vapour permeability – due to its very high vapour permeability it is a perfect render for walls of cellular concrete, walls in old buildings, walls of swimming pools, etc.

ATLAS SILKON is factory-manufactured thin-coat render, paste form mixtures made of organosilicon resin, water, aggregate, pigments and additives. It enables a decorative surface with spotted or rustic texture. For indoor and outdoor applications. Recommend as façade plaster with the application of EPS boards, XPS boards or mineral wool boards.

ATLAS DEKO M/DEKO DIM is manufactured on the basis of acrylic resin with the addition of coloured quartz aggregate (DEKO M) or natural aggregate (DEKO DIM). Constitutes light and durable render of increased resistance to washing, cleaning and abrasion – ideal for plinths, fences, resistance walls, columns - it is extremely resistant to damages resulting from atmospheric conditions and washing the surface. Recommended for surfaces exposed to high thermal and operation loads - owing to its high elasticity, perfectly compensates strain resulting from different heat expansion of the layers beneath, caused, e.g., by long exposition to sunlight. For indoor and outdoor applications. Recommend as

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS

in accordance with ISO 14025:2010 and EN 15804:2012

façade plaster with the application of EPS boards

TYNK AKRYLOWY ATLAS is factory-manufactured thincoat render, paste form mixtures made of water-based polymer dispersion, water, limestone, lime powder, aggregate, pigments and additives. It enables a decorative surface with spotted texture. For indoor and outdoor applications. Recommend as façade plaster with the application of EPS boards and XPS boards.

TYNK SILIKONOWY ATLAS is factory-manufactured thincoat render, paste form mixtures made of organosilicon resin, water, aggregate, pigments and additives. It enables a decorative surface with spotted texture. For indoor and outdoor applications. Recommend as façade plaster with the application of EPS boards, XPS boards or mineral wool boards.

TYNK AKRYLOWO-SILIKONOWY ATLAS is factory-manufactured, paste form mixtures made of water-based polymer dispersion combined with silicone-based binder, water, limestone, lime powder, aggregate, pigments and additives. It enables a decorative surface with spotted texture. For indoor and outdoor applications. Recommend as façade plaster with the application of EPS boards.

TYNK SILIKONOWO-SILIKATOWY is factory-manufactured, paste form mixtures made of silicon resin combined with silicate-based binder, water, limestone, lime powder, aggregate, pigments and additives. It enables a decorative surface with spotted texture. For indoor and outdoor applications. Recommend as façade plaster with the application of EPS boards.

ATLAS CERPLAST is manufactured on the basis of acrylic resin and quartz powder. For indoor and outdoor applications. It is ready-to-use priming mass designed for priming substrates before the application following renders: ATLAS CERMIT ACRYL TYNK AKRYLOWY ATLAS TYNK AKRYLOWO-SILIKONOWY ATLAS TYNK MOZAIKOWY ATLAS DEKO M/DEKO DIM

ATLAS SILKAT ASX is manufactured on the basis of glass - water and quartz sand. It is ready-to-use priming mass designed for priming substrates before the application ATLAS SILKAT (silicate render).

ATLAS SILKON ANX is manufactured on the basis of organosilicon resin and quartz sand. It is ready-to-use priming mass designed for priming substrates before the application following renders: ATLAS SILKON TYNK SILIKONOWO-SILIKATOWY ATLAS

TYNK SILIKONOWY ATLAS

USE

Thin-coat renders can be applied directly on base coat of thermal insulation systems, but they can be applied also on traditional plaster (cementitious and cementitious-lime) and concrete.

The outer layer of the system may be a thin-coat render solely or a thin coat render coated with a façade paint (optionally). Priming is necessary before applying the renders independently of the base type.

FUNCTION

The function of thin-coat textured renders is to protect the external wall against the adverse effects of atmospheric conditions and decorate the façades.

Application of key coats before application of renders have three functions: to make renders application easier, to improve its adhesion to the substrate and to constitutes a chemical barrier between the substrate and the render, limiting their interaction - limits colour penetration from the substrate and occurrence of stains on the surface of the render.

5. PRODUCT TECHNICAL DATA

Acrylic render ATLAS CERMIT

Trade name	ATLAS CERMIT
Description	ready to use paste
Color	655 colours (according to ATLAS RICH COLOUR PALETTE)
Thickness options, up to:	1.5; 2.0 mm
Density	1.9 kg/dm³
Reaction to fire – class	A2 s1, d0
Water vapour permeability	$15 < V_2 \le 150 \text{ g/m}^2\text{d}$
Water absorption	$0.1 < W_2 \le 0.5 \text{ kg/m}^2 h^{0.5}$
Adhesion	≥ 0.35 MPa
Thermal conductivity coefficient (tabular value)	0.76 W/mK (λ _{10, dry})
Coverage	ca. 2.5 – 4.5 kg/m² (regulated by particle size)
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system EN 15824:2010 as single product

Silicate render ATLAS SILKAT

Trade name	ATLAS SILKAT
Description	ready to use paste
Color	352 colours (according to ATLAS RICH COLOUR PALETTE)
Thickness options, up to:	1.5; 2.0 mm
Density	1.9 kg/dm³
Coverage	ca. 2.5 – 3.0 kg/m² (regulated by particle size)
Reaction to fire – class	A2 s1, d0
Water vapour permeability	$15 < V_2 \le 150 \text{ g/m}^2\text{d}$
Water absorption	$0.1 < W_2 \le 0.5 \text{ kg/m}^2 h^{0.5}$
Adhesion	≥ 0.35 MPa
Thermal conductivity coefficient (tabular value)	0.76 W/mK (λ _{10, dry})
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system EN 15824:2010 as single product

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS

in accordance with ISO 14025:2010 and EN 15804:2012

Silicone render ATLAS SILKON

Trade name	ATLAS SILKON
Description	ready to use paste
Color	655 colours (according to ATLAS RICH COLOUR PALETTE)
Thickness options, up to:	1.5; 2.0 mm
Density	1.9 kg/dm³
Coverage	ca. 2.5 – 3.0 kg/m² (regulated by particle size)
Reaction to fire – class	A2 s1, d0
Water vapour permeability	$15 < V_2 \le 150 \text{ g/m}^2\text{d}$
Water absorption	$0.1 < W_2 \le 0.5 \text{ kg/m}^2 h^{0.5}$
Adhesion	≥ 0.35 MPa
Thermal conductivity coefficient (tabular value)	0.76 W/mK (λ _{10, dry})
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system EN 15824:2010 as single product

Acrylic render TYNK AKRYLOWY ATLAS

Trade name	TYNK AKRYLOWY ATLAS
Description	ready to use paste
Color	400 colours (see the new ATLAS COLOUR PALETTE)
Thickness options, up to:	1.5 mm
Density	1.9 kg/dm ³
Coverage	ca. 2.5 kg/m ²
Reaction to fire – class	A2 s1, d0
Water vapour permeability	$15 < V_2 \le 150 \text{ g/m}^2\text{d}$
Water absorption	$0.1 < W_2 \le 0.5 \text{ kg/m}^2 h^{0.5}$
Adhesion	≥ 0.35 MPa
Thermal conductivity coefficient (tabular value)	0.67 W/mK (λ _{10, dry})
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system EN 15824:2010 as single product

Silicone-silicate render TYNK SILIKONOWO-SILIKATOWY ATLAS

TYNK SILIKONOWO-SILIKATOWY ATLAS
ready to use paste
400 colours *) (see the new ATLAS COLOUR PALETTE)
1.5 mm
1.9 kg/dm ³
ca. 2.5 kg/m ²
A2 s1, d0
$15 < V_2 \le 150 \text{ g/m}^2\text{d}$
$0.1 < W_2 \le 0.5 \text{ kg/m}^{2}\text{h}^{0.5}$
≥ 0.35 MPa
0.67 W/mK (λ _{10, dry})
see MSDS
AT-15-9090/2014 as element of thermal insulation system EN 15824:2010 as single product

Silicone render TYNK SILIKONOWY ATLAS

Trade name	TYNK SILIKONOWY ATLAS
Description	ready to use paste
Color	400 colours *) (see the new ATLAS COLOUR PALETTE)
Thickness options, up to:	1.5 mm
Density	1.9 kg/dm³
Coverage	ca. 2.5 kg/m ²
Reaction to fire – class	A2 s1, d0
Water vapour permeability	$15 < V_2 \le 150 \text{ g/m}^2\text{d}$
Water absorption	$0.1 < W_{2} \le 0.5 \text{ kg/m}^{2} h^{0.5}$
Adhesion	≥ 0.35 MPa
Thermal conductivity coefficient (tabular value)	0.67 W/mK (λ _{10, dry})
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system EN 15824:2010 as single product

Acrylic-silicone render TYNK AKRYLOWO-SILIKONOWY ATLAS

Trade name	TYNK AKRYLOWO-SILIKONOWY ATLAS
Description	ready to use paste
Color	400 colours *) (see the new ATLAS COLOUR PALETTE)
Thickness options, up to:	1.5 mm
Density	1.9 kg/dm ³
Coverage	ca. 2.5 kg/m ²
Reaction to fire – class	A2 s1, d0
Water vapour permeability	$15 < V_2 \le 150 \text{ g/m}^2\text{d}$
Water absorption	$0.1 < W_2 \le 0.5 \text{ kg/m}^2 h^{0.5}$
Adhesion	≥ 0.35 MPa
Thermal conductivity coefficient (tabular value)	0.76 W/mK (λ _{10, dry})
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system FN 15824:2010 as single product

Acrylic decorative mosaic render ATLAS DEKO M / DEKO DIM

Trade name	ATLAS DEKO M/DEKO DIM
Description	ready to use paste
Color	60 colours (see the new ATLAS COLOUR PALETTE)
Thickness options, up to:	1.2; 2.0 mm
Density	1.6 kg/dm ³
Coverage	ca. 3.0 – 5.5 kg/m² (regulated by particle size)
Reaction to fire – class • for renders up to 2.0 mm • for renders up to 1.2 mm	A2 s1, d0 B s1, d0
Water vapour permeability	$15 < V_2 \le 150 \text{ g/m}^2\text{d}$
Water absorption	$0.1 < W_{2} \le 0.5 \text{ kg/m}^{2}\text{h}^{0.5}$
Adhesion	≥ 0.35 MPa
Thermal conductivity coefficient (tabular value)	0.76 W/mK (λ _{10, dry})
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system EN 15824:2010 as single product

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS

in accordance with ISO 14025:2010 and EN 15804:2012

Priming mass Atlas CERPLAST

Trade name	ATLAS CERPLAST
Description	ready-to-use liquid
Color	white (additionally available in three colours (clinker, brown and graphite)
Density	1.5 kg/dm ³
Adhesion to concrete	> 1.0 MPa
Drying time	4 - 6 h
Consumption	0.3 kg/m ²
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system

Priming mass Atlas SILKAT ASX

Trade name	ATLAS SILKAT ASX
Description	ready-to-use liquid
Color	white
Density	1.5 kg/dm ³
Adhesion to concrete	> 1.0 MPa
Drying time	4 - 6 h
Coverage	0.3 kg/m ²
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system

Priming mass Atlas SILKON ANX

Trade name	ATLAS SILKON ANX
Description	ready-to-use liquid
Color	white
Density	1.5 kg/dm ³
Adhesion to concrete	> 1.0 MPa
Drying time	4-6h
Coverage	0.3 kg/m ²
Dangerous substance	see MSDS
Technical requirements	AT-15-9090/2014 as element of thermal insulation system

Placing on the market

For the placing on the market in the European Union the Regulation (EU) No 305/2011 applies. Renders need a Declaration of Performance taking into consideration the harmonized product standard EN 15824:2010.

6. PRODUCT MANUFACTURE

Raw materials and energy

Table 1. Raw materials used to produce ATLAS acrylic renders

No	Name of semi-finished product or raw material	total used in production [Mg]	used on product [%/kg]	used on product [kg/m²]		
1	raw materials	1355	58.739	1.9384		
2	additives	558.9	24.228	0.7995		
3	rest components (< 0,5%)	52.5	2.276	0.075		
4	pallet	125.3	5.432	0.1793		
5	PE foil st	6.1	0.264	0.0088		
6	PE foil	0.7	0.030	0.001		
7	carton spacer	3.5	0.152	0.005		
8	bucket	82.1	3.559	0.1174		
9	water	122.7	5.319	0.1755		

Table 2. Raw materials used to produce ATLAS silicate renders

No	Name of semi-finished product or raw material	total used in production [Mg]	used on product [%/kg]	used on product [kg/m²]		
1	raw materials	263	62.470	2.063		
2	additives	84.7	20.119	0.663		
3	rest components (< 0,5%)	11.8	2.803	0.092		
4	pallet	21.9	5.202	0.172		
5	PE foil st	1.1	0.261	0.008		
6	PE foil	0.1	0.024	0.001		
7	carton spacer	0.6	0.143	0.005		
8	bucket	14.4	3.420	0.113		
9	water	23.4	5.558	0.183		

Table 3. Raw materials used to produce ATLAS silicone renders

No	Name of semi-finished product or raw material	total used in production [Mg]	used on product [%/kg]	used on product [kg/m²]	
1	raw materials	458.4	77.485	2.2667	
2	additives	127.2	21.501	0.6293	
3	rest components (< 0,5%)	rest components 6 < 0,5%)		0.0299	
4	pallet	28	4.733	0.1382	
5	PE foil st	1.4	0.237	0.0068	
6	PE foil	0.2	0.034	0.0008	
7	carton spacer	0.8	0.135	0.0039	
8	bucket	18.3	3.093	0.0906	

ATLAS Thin-coat renders based on organic binders

in accordance with ISO 14025:2010 and EN 15804:2012

 Table 4. Raw materials used to produce ATLAS mix renders

No	Name of semi-finished product or raw material	total used in production [Mg]	used on product [%/kg]	used on product [kg/m²]
1	raw materials	15.98	69.448	2.2943
2	additives	2.3	9.996	0.3294
3	rest components (each < 0,5%)	0.44	1.912	0.0624
4	pallet	0.98	4.259	0.1404
5	PE foil st	0.05	0.217	0.0069
6	PE foil	0.01	0.043	0.0008
7	carton spacer	0.03	0.130	0.0039
8	bucket	0.64	2.781	0.092
9	water	2.58	11.213	0.3699

The figure below shows working process during the production of ready-to-use renders. The raw materials are stored in the production factory in silos, big bags, or sacks accordingly. They are dosed and intensely mixed according to the applicable formulation. Next, the products are filled into containers and send to quality control. After then they are temporarily stored or delivered directly to the site as ready-to-use products.

Figure no. 1. Production process - ready-to-use renders

Quality assurance

Integrated Management System consists of three complementary subsystems:

- the quality management ISO 9001:2008 (since 1999);
- environmental management ISO 14001:2004 + Cor 1:2009 (since 2008);
- the management of occupational health and safety BS OHSAS 18001:2007 (since 2009)

Packaging

Renders are packed in buckets made of Polypropylene (25 kg), key coats are packaged in buckets made of Polypropylene (15 kg). These products must be transported and stored in tightly sealed buckets, in dry conditions and positive temperatures (most preferably on pallets). Shelf life in conditions as specified is 12 months from the production date shown on the packaging.

7. PRODUCT APPLICATION

Key coat application

The products are delivered as the ready to use mix. It must not be mixed with other materials,

diluted, or thickened. The whole content of the container should be mix directly before application to equalize the consistency. Apply the priming mass onto the prepared substrate (evenly over the whole surface) using a roller or a brush. Rendering of the surface can commence after the mass has completely dried i.e. after 4 - 6 hours after its application.

Render application

Regardless of the type of the thin-layer ATLAS render to be used, it should be preceded by a coat of an appropriate render primer, suitable for the type of rendering selected. The renders are delivered as the ready to use mix. It must not be mixed with other materials, diluted, or thickened. The whole content of the container should be mix directly before application to equalize the consistency. Apply the render in a layer equal to the aggregate grain size, with a stainless steel float. Remove the excess of the material, place it in the bucket and remix. The freshly applied coat requires texture forming with a float made of plastic. The spotted effect (N renders) is obtained by floating the plaster with circular movements, while the rustic texture (R renders) - by floating with circular, horizontal, or vertical movements, depending on the required direction of scores. The exception is decorative mosaic render ATLAS DEKO M/DEKO DIM that does not require floating, only float the surface always in the same direction at the same time. The setting time, depending on the surface, the temperature and the relative humidity of the air, is from 12 to 48 hours.

Occupational safety and environmental protection

Occupational safety and environmental protection are described in Material Safety Data Sheets (MSDS) for each product.

Note

Specific information on application and other actions with these products are described in detail in the technical data sheet available on the producer website **www.atlas.com.pl**.

PRANICT FNTAL IIFI.I AK

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS

in accordance with ISO 14025:2010 and EN 15804:2012

8. EMISSIONS (LCI) AND THEIR IMPACT **ON THE ENVIRONMENT**

The following chapter show the life cycle inventory analysis of the adhesives with regard to primary energy needs, water needs, emissions into air and waste.

Table 5. Primary energy consumption for A3 module

Unit	total in production [unit]	used on product [unit/Mg]	used on product [unit/m²]
kWh	4359798	23.26	0.08
Mg	—	—	—
Mg	_	—	—
Mg	—	—	—
litrs	133222	0.71	0.0023
litrs	—	—	—
litrs	—	—	—
m³	1015218	5.42	0.02
m³	_	_	—
litrs	—	—	—
	Unit kWh 1 Mg 1 Mg 1 litrs 1 litrs 1 m ³	Unittotal in production (unit)kWh4359798MgMgMgMgItrs133222litrsm³1015218m³litrslitrs	Unittotal in productionused on productkWh435979823.26MgMgMgMgIdrs1332220.71litrsIdrsm³10152185.42litrslitrs

Table 6. Emissions into air	generated durin	g production	stage A3
-----------------------------	-----------------	--------------	----------

Air emission	Unit	total in production [Mg]	used on product [kg/Mg]	used on product [kg/m²]		
Dust	kg	10915.06	0.0200	0.0001		
СО	kg	5058.37	0.0089	0.00003		
CO ₂	kg	1118904.70	1.1000	0.0036		
NO ₂	kg	2925.38	0.0065	0.00002		
SO ₂	kg	453.42	1.00E-02	1.30E-04		
NH ₃	kg	0.49	6.56E-07	2.13E-09		
HCI	kg	9.27	1.24E-05	4.02E-08		
CH ₄	kg	26.28	3.51E-05	1.14E-07		

Table 7. Emissions into water generated during production stage A3

Water and sewage	Unit	Total amount									
Water	m ³	24794									
Industrial sewage	m ³	6158									
Municipal sewage:	m ³	5131									
Municipal sewage water emissions											
BOD	mg/l	28									
COD	mg/l	77									
рН	°_	7.7									
Suspended matter	mg/l	32									
Nitrogen amonian	mg/l	0.64									
Phosphorans	mg/l	0.9									
Industrial sewage water e	emissions										
BOD	mg/l	200									
COD	mg/l	350									
рН	°_	8									
Suspended matter	mg/l	100									

Table 8. Waste generated in the phase of product manufacturing Ă3

mg/l

Suspended matter

Waste code	Unit	total in production [Mg]	used on product [kg/Mg]	used on product [kg/m²]		
150101	Mg	91.755	0.490	0.00162		
150102	Mg	53.753	0.287	0.00095		
101382	Mg	1149.9	6.135	0.02024		
130208	Mg	0.8	0.004	1.41E-05		
150110	Mg	0.109	0.001	1.92E-06		
150202	Mg	1.678	0.009	2.95E-05		
150203	Mg	2	0.011	3.52E-05		
160107	Mg	0.12	0.001	2.11E-06		
170405	Mg	6.272	0.033	1.10E-04		
80112	Mg	1.361	0.007	2.40E-05		
130307	Mg	0.083	0.0004	1.46E-06		
150105	Mg	61.36	0.327	1.08E-03		
160214	Mg	0.014	0.0001	2.46E-07		
160216	Mg	0.79	0.004	1.39E-05		
160304	Mg	37.567	0.200	6.61E-04		
160605	Mg	0.0026	0.00001	4.58E-08		
170107	Mg	319.824	1.706	0.00563		
150103	Mg	90.36	0.482	0.00159		

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS

in accordance with ISO 14025:2010 and EN 15804:2012

9. ENVIRONMENTAL CHARACTERISTICS (LCA)

The results of the LCA with the indicators as per EPD requirement are given in the following tables for product manufacture (A1, A2, A3 modules).

Table 9. Environmental characteristic for 1 kg acrylic render

Environmental assessment information (MND – Module not declared, MD – Module Declared)																
Pro	duct sta	ige	Consti pro	ruction cess		Use stage End of life						Benefits and loads beyond the system boundary				
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental i	mpacts (for 1 kg).				
Indicator	Unit	A1	A2	A3	A1-A3
Global warming potential	[kg CO ₂ eq.]	0.93	0.007	0.03	0.96
Depletion potential of the stratospheric ozone layer	[kg CFC 11 eq.]	1.05E-07	4.69E-08	3.14E-10	1.53E-07
Acidification potential of soil and water	[kg SO ₂ eq.]	0.00445	0.00002	0.00004	0.0045
Eutrophication potential	[kg (PO ₄) ³ - eq.]	0.00033	0.00006	0.00001	0.0004
Formation potential of tropospheric ozone	[kg Ethene eq.]	0.00029	0.00	0.00	0.0003
Abiotic depletion potential (ADP-elements) for non-fossil resources	[kg Sb eq.]	0.011	0.00	0.00	0.011
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	[MJ]	4.3	0.09360	0.4	4.8
Environmental aspects	on resource use (f	or 1 kg).			
Indicator	Unit	A1	A2	A3	A1-A3
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA
Use of renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	0.11	0.00	0.02	0.13
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA
Use of non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	5.17	0.10	0.44	5.71
Use of secondary material	[kg]	0.00	0.00	0.00	0.00
Use of renewable secondary fuels	[MJ]	0.09	0.00	0.00	0.09
Use of non-renewable secondary fuels	[MJ]	0.15	0.00	0.00	0.15
Net use of fresh water	[dm ³]	0.11	0.001	0.01	0.12
Other environmental information of	lescribing waste c	ategories (fo	or 1 kg).		
Indicator	Unit	A1	A2	A3	A1-A3
Hazardous waste disposed	[kg]	0.0001	0.00	0.00	0.0001
Non-hazardous waste disposed	[kg]	0.0100	0.0005	0.0090	0.0195
Radioactive waste disposed	[kg]	0.00	0.00	0.00	0.00
Components for re-use	[kg]	0.00	0.00	0.0050	0.0050
Materials for recycling	[kg]	0.0082	0.00	0.0009	0.0091
Materials for energy recovery	[kg]	0.00	0.00	0.00	0.00
Exported energy	[MJ]	0.00	0.00	0.00	0.00

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS in accordance with ISO 14025:2010 and EN 15804:2012

Table 10. Environmental characteristic for 1 kg silicone render

		E	nvironn	nental a	ssessme	ent infor	mation	(MND –	Module	e not de	clared, N	ND – Mo	odule D	eclared)		
Pro	duct sta	age	Const pro	ruction		Use stage End of life							Benefits and loads beyond the system boundary			
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental impacts (for 1 kg).										
Indicator	Unit	A1	A2	A3	A1-A3					
Global warming potential	[kg CO ₂ eq.]	0.690	0.004	0.03	0.72					
Depletion potential of the stratospheric ozone layer	[kg CFC 11 eq.]	1.16E-07	2.72E-08	3.14E-10	1.44E-07					
Acidification potential of soil and water	[kg SO ₂ eq.]	0.00358	0.00001	0.00004	0.0036					
Eutrophication potential	[kg (PO ₄) ³ - eq.]	0.00056	0.00003	0.00001	0.0006					
Formation potential of tropospheric ozone	[kg Ethene eq.]	0.00023	0.00	0.00	0.0002					
Abiotic depletion potential (ADP-elements) for non-fossil resources	[kg Sb eq.]	0.00956	0.00	0.00	0.00956					
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	[MJ]	3.2	0.1	0.4	3.6					
Environmental aspects	on resource use (f	^f or 1 kg).								
Indicator	Unit	A1	A2	A3	A1-A3					
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA					
Use of renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA					
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	0.07	0.00	0.02	0.10					
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA					
Use of non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA					
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	3.81	0.06	0.44	4.31					
Use of secondary material	[kg]	0.00	0.00	0.00	0.00					
Use of renewable secondary fuels	[MJ]	0.09	0.00	0.00	0.09					
Use of non-renewable secondary fuels	[MJ]	0.14	0.00	0.00	0.14					
Net use of fresh water	[dm ³]	0.10	0.0005	0.05	0.15					
Other environmental information of	lescribing waste o	ategories (fo	or 1 kg).							
Indicator	Unit	A1	A2	A3	A1-A3					
Hazardous waste disposed	[kg]	0.0001	0.0000	0.0000	0.0001					
Non-hazardous waste disposed	[kg]	0.0100	0.0004	0.0091	0.0195					
Radioactive waste disposed	[kg]	0.0000	0.0000	0.0000	0.0000					
Components for re-use	[kg]	0.0000	0.0000	0.0049	0.0049					
Materials for recycling	[kg]	0.0078	0.0000	0.0009	0.0087					
Materials for energy recovery	[kg]	0.0000	0.0000	0.0000	0.0000					
Exported energy	[MJ]	0.0000	0.0000	0.0000	0.0000					

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS

in accordance with ISO 14025:2010 and EN 15804:2012

Table 11. Environmental characteristic for 1 kg silicate render

Environmental assessment information (MND – Module not declared, MD – Module Declared)																
Pro	duct sta	age	Const pro	ruction	Use stage End of life					Benefits and loads beyond the system boundary						
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental impacts (for 1 kg).										
Indicator	Unit	A1	A2	A3	A1-A3					
Global warming potential	[kg CO ₂ eq.]	0.59	0.006	0.026	0.60					
Depletion potential of the stratospheric ozone layer	[kg CFC 11 eq.]	9.05E-08	3.88E-08	3.14E-10	1.29E-07					
Acidification potential of soil and water	[kg SO ₂ eq.]	0.00198	0.00001	0.00004	0.0020					
Eutrophication potential	[kg (PO ₄) ³ - eq.]	0.00018	0.00005	0.00001	0.0002					
Formation potential of tropospheric ozone	[kg Ethene eq.]	0.00013	0.00	0.00000	0.0001					
Abiotic depletion potential (ADP-elements) for non-fossil resources	[kg Sb eq.]	0.00701	0.00	0.00000	0.00701					
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	[MJ]	2.7	0.07800	0.4	2.8					
Environmental aspects	on resource use (f	^f or 1 kg).								
Indicator	Unit	A1	A2	A3	A1-A3					
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA					
Use of renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA					
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	0.09	0.00	0.02	0.11					
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA					
Use of non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA					
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	2.13	0.09	0.44	2.66					
Use of secondary material	[kg]	0.00	0.00	0.00	0.00					
Use of renewable secondary fuels	[MJ]	0.10	0.00	0.00	0.10					
Use of non-renewable secondary fuels	[MJ]	0.14	0.00	0.00	0.14					
Net use of fresh water	[dm ³]	0.10	0.001	0.05	0.15					
Other environmental information of	lescribing waste o	ategories (fo	or 1 kg).							
Indicator	Unit	A1	A2	A3	A1-A3					
Hazardous waste disposed	[kg]	0.0001	0.0000	0.0000	0.0001					
Non-hazardous waste disposed	[kg]	0.0100	0.0004	0.0091	0.0195					
Radioactive waste disposed	[kg]	0.0000	0.0000	0.0000	0.0000					
Components for re-use	[kg]	0.0000	0.0000	0.0049	0.0049					
Materials for recycling	[kg]	0.0082	0.0000	0.0009	0.0091					
Materials for energy recovery	[kg]	0.0000	0.0000	0.0000	0.0000					
Exported energy	[MJ]	0.0000	0.0000	0.0000	0.0000					

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS in accordance with ISO 14025:2010 and EN 15804:2012

Table 12. Environmental characteristic for 1 kg mix sil-sil render

Environmental assessment information (MND – Module not declared, MD – Module Declared)																
Prod	duct sta	age	Consti pro	ruction cess			ι	Jse stag	e			End of life				Benefits and loads beyond the system boundary
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmental impacts (for 1 kg).									
Indicator	Unit	A1	A2	A3	A1-A3				
Global warming potential	[kg CO ₂ eq.]	0.64	0.005	0.03	0.67				
Depletion potential of the stratospheric ozone layer	[kg CFC 11 eq.]	1.03E-07	0.00	0.00	1.36E-07				
Acidification potential of soil and water	[kg SO ₂ eq.]	0.003	0.00	0.00	0.0028				
Eutrophication potential	[kg (PO ₄) ³ - eq.]	0.0004	0.00	0.00	0.0004				
Formation potential of tropospheric ozone	[kg Ethene eq.]	0.00018	0.00	0.00	0.0002				
Abiotic depletion potential (ADP-elements) for non-fossil resources	[kg Sb eq.]	0.0082	0.00	0.00	0.00824				
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	[MJ]	2.9	0.066	0.40	3.4				
Environmental aspects	on resource use (f	for 1 kg).							
Indicator	Unit	A1	A2	A3	A1-A3				
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA				
Use of renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA				
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	0.08	0.00	0.02	0.10				
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA				
Use of non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA				
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[MJ]	2.96	0.07	0.44	3.47				
Use of secondary material	[kg]	0.00	0.00	0.00	0.00				
Use of renewable secondary fuels	[MJ]	0.09	0.00	0.00	0.09				
Use of non-renewable secondary fuels	[MJ]	0.14	0.00	0.00	0.14				
Net use of fresh water	[dm ³]	0.10	0.00	0.05	0.15				
Other environmental information of	lescribing waste o	ategories (fo	or 1 kg).						
Indicator	Unit	A1	A2	A3	A1-A3				
Hazardous waste disposed	[kg]	0.0001	0.0000	0.0000	0.0001				
Non-hazardous waste disposed	[kg]	0.0100	0.0004	0.0091	0.0195				
Radioactive waste disposed	[kg]	0.0000	0.0000	0.0000	0.0000				
Components for re-use	[kg]	0.0000	0.0000	0.0049	0.0049				
Materials for recycling	[kg]	0.0082	0.0000	0.0009	0.0091				
Materials for energy recovery	[kg]	0.0000	0.0000	0.0000	0.0000				
Exported energy	[MJ]	0.0000	0.0000	0.0000	0.0000				

ATLAS THIN-COAT RENDERS BASED ON ORGANIC BINDERS

in accordance with ISO 14025:2010 and EN 15804:2012

VERIFICATION

The process of verification of an EPD is in accordance with ISO 14025, clause 8 and ISO 21930, clause 9. After verification, this EPD is valid for a 5-year-period. EPD does not have to be recalculated after 5 years, if the underlying data have not changed significantly.

The basis for LCA analysis was EN 15804

Independent verification corresponding to ISO 14025 & 8.3.1.

external

internal

Verification of EPD: dr eng. Aleksander Panek LCI audit and input data verification: msc eng. Dominik Bekierski LCA: dr eng. Michał Piasecki

Verification of procedures and declaration: dr eng. Halina Prejzner

NORMATIVE REFERENCES

- ISO 14025:2006, Environmental management Type III environmental declarations Principles and procedure. .
- ISO 21930:2007, Sustainability in building and construction Environmental declaration of building products.
- ISO 14044:2006, Environmental management Life cycle assessment Requirements and guidelines.
- •
- ISO 15686-1:2000, Buildings and constructed assets Service life planning Part 1: General principles ISO 15686-8:2008, Buildings and constructed assets Service life planning Part 8: Reference service life

Zakład Fizyki Cieplnej, Instalacji Sanitarnych i Środowiska 02-656 Warszawa, ul. Ksawerów 21

ŚWIADECTWO nr 015/2014 DEKLARACJI ŚRODOWISKOWEJ III TYPU

Wyroby:

Dyspersyjne zaprawy tynkarskie z podkładami ATLAS: SILKAT ASX, SILKON ANX, CERMIT acryl, SILKAT, SILKON, tynk AKRYLOWY, tynk AKRYLOWO-SILIKONOWY, tynk SILIKONOWY, tynk SILIKONOWO-SILIKATOWY, DEKO M/DIM

Wnioskodawca:

ATLAS Sp. z o.o.

91-222 Łódź, ul. Św. Teresy 105

potwierdza się poprawność ustalenia danych uwzględnionych przy opracowaniu Deklaracji Środowiskowej III typu oraz zgodność z wymaganiami normy

PN-EN 15804:2012

Zrównoważoność obiektów budowlanych. Deklaracje środowiskowe wyrobów. Podstawowe zasady kategoryzacji wyrobów budowlanych.

Niniejsze świadectwo, wydane po raz pierwszy 10 marca 2014 r. jest ważne 5 lat, lub do czasu zmiany wymienionej Deklaracji Środowiskowej

Kierownik Zakładu Fizyki Cieplnej, Instalacji Sanitarnych i Środowiska

Robert Gervic

Dvrektor Instytutu Techniki Budowlane) Jan Bobrowicz

Warszawa, marzec 2014 r.

