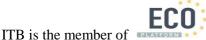
Environmental Product Declaration No 18/2014

Natural and syntetic gypsum (FGD) and anhydrite binders gypsum (dry powder products)



Issuance date: 01.03.2014 Validity date: 01.03.2019

EPD program operator:

Building Research Institute (ITB), 00-611 Warsaw, Filtrowa 1 www.itb.pl; www.zb.itb.pl/epd_

The European Platform for EPD program operators.

Manufacturer

Adress: Leszcze 15, 28-400 Pińczów Poland Telephone number: + 48 41 35 78 100 Fax number: + 48 41 35 78 709 Internet address: <u>www.dolina-nidy.com.pl</u> E-mail address: <u>sekretariat@dolina-nidy.com.pl</u>

Basic information

This declaration is the type III Environmental Product Declaration (EPD) based on EN 15804 and verified according to ISO 14025. It contains information about the impact of declared construction materials on environment and their aspects verified by the independent Advisory Board according to ISO 14025. Basically, a comparison or evaluation of EPD data is possible only if all the compared data were created according to EN 15804 (see point 5.3 of the norm).

Life cycle: A1-A3 modules in accordance with EN 15804 (Cradle to Gate) The year of preparing the characteristic: 2014 Issuance date: 10.03. 2014 Validation date: 01.03.2014 Validity date: 10.03.2019 Declared durability: Under normal conditions, gypsum binders have an expected service life well in excess of 50 years. Declared unit : 1 kg PCR: ITB PCR A General v1.4

Manufacturer and Product Information

Dolina Nidy is a manufacturer of gypsum and anhydrite binders for further processing (dry powder products). These binders are based on two types of raw materials: natural, exploit from gypsum quarry, and FGD gypsum. FGD gypsum is a unique synthetic product derived from flue gas desulfurization systems at electric power plants. Both natural and FGD gypsum are inert, non-toxic materials, harmless to human life in their natural state. They have Radiation Hygiene Certificate and in 2010 have been registered in accordance with REACH Regulation (EC) No 1907/2006 (registration number 01-2119444918-26-0138) Based on these two type of raw materials, as the only in Poland, Dolina Nidy offers gypsum binders, projection or manual gypsum plasters, different type of finishing coat, adhesives to plasterboard and gypsum used in mining. These products based on gypsum are healthy, ecological and human friendly. They create comfortable living environment by humidity regulation and enhance thermal insulation properties.

Dolina Nidy is the oldest producer of gypsum products on Polish market and manufactured gips budowlany since 1959. Gips budowlany syntetyczny has been manufactured since 2009. Anhydryt has been manufactured since 2003. It is no commercial product. It is only used as a semi-product forgypsum plasters. Dolina Nidy has implemented an Integrated Management System consisting of three complementary subsystems:

- the quality management ISO 9001:2008 (since 2002); (see Appendix no. 10-11)

- environmental management ISO 14001:2004 +Cor 1:2009 (since 2004);

- the management of occupational health and safety PN-N 18001:2004 (since 2008). (see Appendix no. 12)

The Integrated Management System Policy defines the principal directions of DOLINA NIDY activities with a view to offering products that are safe and environmentally friendly. This is achieved by professional product development, state-of-the-art production process and meticulous quality control. The System is based on the process approach, this means that all the processes that have an impact on quality have been identified and described and members of the staff have been appointed and authorised to manage these processes. The continuous improvement in the quality of products as well as processes is aimed at winning long-term trust of our Customers and consolidating the positive image of our firm. The assumptions of the Integrated Management System Policy have been communicated to all members of the staff and published in widely available places.

Dolina Nidy has implemented and maintains a Quality and Environmental Management Systems fulfils requirements of the following standards:

- ISO 9001:2008 and ISO 14001:2004 + Cor1:2009, (Registration number

255019 QM08/UM),

- Occupational health and safety Management System PN-N 18001:2004 (Registration number 255019 OH/PL)

Scope of certificates: Formula design. production and sale of gypsum binder and dry mix gypsum.

Certification body: DQS – PCA accreditation number - AC 087, Deutsche Akkreditierungsstelle D-ZM16074-01-00

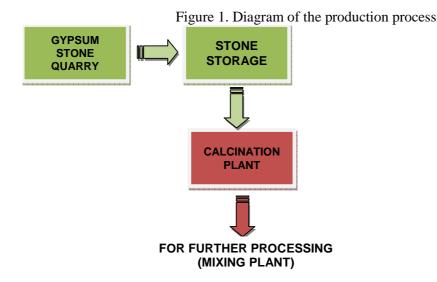
Since 2007, Dolina Nidy has implemented the European Eco-Management and Audit Scheme (EMAS) which sets additional requirements connected with active involvement of employees, adaptation of undertaken actions to legal regulations, transparency of undertaken actions and obtained results, as well as dialogue with the community. EMAS registration number PL 2.26-001-8.

Product type

According to EN 13279-1:2008 standard:

Standard designation	Type of application	Commercial name
Gypsum binder	for further processing, e.g. dry powder products,	Gips budowlany Dolina Nidy
	gypsum block and elements	
Gypsum binder	for further processing, e.g. dry powder products, gypsum block and elements	Gips budowlany syntetyczny Dolina Nidy

Anhydrite binder has no reference documents. There is a kind of high burn gypsum used as a semi-product for gypsum plasters


Description	dry powder	
Destination	Gips budowlany, gips budowlany syntetyczny	
	- for direct use or further processing e.g. dry	
	powder products, gypsum blocks, gypsum	
	plasterboards etc.	
	Anhydrite – semi-product for gypsum plasters.	
Colour	Gyps budowlany syntetyczny - yellow	
	Gips budowlany, Anhydryt –grey	

Technical parameters

Trade name	Gips budowlany		
Description	Gypsum binder - natural		
Standard designation	A1 – EN 13279-1:2008		
Bulk density	850 kg/m ³		
Dry density	1250 kg/m ³		
Reaction to fire	A1		
Product literature	Declaration of conformity no EC 01/CPR, Radiation Hygiene Certificate no HR/B/69/2009 Material Safety Data Sheet		
Manufacturing site	Leszcze 15, Pińczów		
Trade name	Gips budowlany syntetyczny		
Description	(FGD gypsum binder -synthetic)		
Standard designation	A1 – EN 13279-1:2008		
Bulk density	850 kg/m ³		
Dry density	1250 kg/m^3		
Reaction to fire	A1		
Product literature (see Appendix no. 15)	Declaration of conformity no EC 16/CPR, Radiation Hygiene Certificate no HR/B/70/2009 Material Safety Data Sheet		
Manufacturing site	Ul. Kazimierska 45, Konin		
Product name	Anhydryt		
Description	Anhydrite binder		
Standard designation	No standard reference. It is semi-product for gypsum plasters production		
Bulk density	850 kg/m^3		
Dry density	-		
Reaction to fire	A1		
Product literature	Material Safety Data Sheet		
Manufacturing site	Leszcze 15, Pińczów		

Allocation

Since 2000 Dolina Nidy sp. z o. o. belongs to Atlas Group, the largest manufacturer of construction chemicals in Poland. The company offers gypsum binders, projection or manual gypsum plasters, different type finishing coat, adhesives to plasterboard, and gypsum used in mining. The production plant in Leszcze, built in 2003-2007 is a modern full automation complex, consisting of a gypsum stone quarry, a stone storage, a calcination plant, a gypsum binder mixing plant and a storage hall.

Gypsum stone after excavation in the quarry is hold in the store from where goes to further processing. The calcination plant provides mechanical processing and heat treatment of stone. The first stage of the gypsum stones treating is a mechanical process which consists in stones breaking, grinding and drying in a bowl-roll mill. Depending on mill separator speed, different graining rock is obtained, that determines its further use. Then the milled and dried gypsum stone is dispensed to calcinators, where it is heat treated. For various type of binders, some or all crystallization water is removed. In this way, gypsum hemihydrate (CaSO₄· $\frac{1}{2}$ H2O) or anhydrite binder (CaSO₄ - high-burn gypsum) are obtained. Afterwards gypsum is transported from calcinators to silos, and pneumatically transported to the mixing plant subsequently. In the mixing plant - depending on binder type - gypsum and anhydrite are blended in the mixer with different additives.

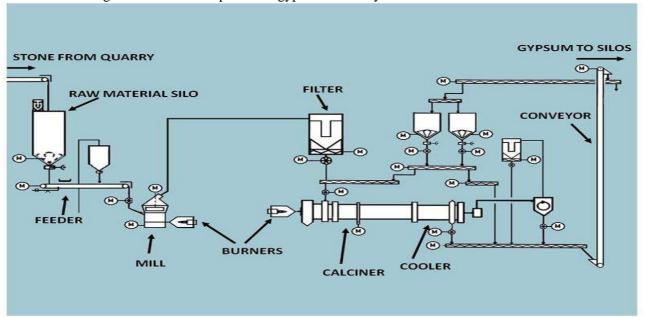


Figure 2. Calcination process – gypsum and anhydrite binders based on natural stone.

List all different products manufactured at Leszcze calcination plant, including quantities and values. Data is required for 100% of the products manufactured at this site.

FGD gypsum is produced in SO₂ reduction process in Konin Electricity Plant (EC Konin). CO_2 from process was allocated to electricity production as well the impact from steam used in gypsym binder production is allocated in the electricity. For the FGD production was allocated water and CaCO₃ impact and energy for product transportation inside factory.

Products	Description/product name	Approximated volume (%)
1	Gips budowlany	27,8
2	Gips modelowy	19,4
3	Anhydryt	8,8
4	Mączka gipsowa	43,9
	Total	100,000

System limits

The life cycle analysis of the examined products covers A1-A3 modules (Cradle to Gate) in accordance with EN 15804:2012. Its include production, including raw materials extraction and energy provision up to the finished, packed product at the factory gate. Processes whose total contribution to the final result, according to mass looked at, is less than 0.5 % was ignored. All inventory processes for gypsum stone mining as explosive substances and gas emissions in explosion were included. For gypsum all processes as: crushing, milling, drying, calcination, transport, and storage processes were included. Office impacts were also taken to consideration.

Data collection period

The data for manufacture of the examined products refer to the year 2012. The life cycle assessments were prepared for Poland as reference area (national electricity mix for 2012).

Data quality

The values determined to calculate the LCA originate from verified LCI Dolina Nidy inventory data.

Assumptions and estimates

Impacts for each product stage and factory process were inventoried and calculated separately. All emission inventory used was specific.

Databases

The data for the processes come from the following databases: LCI questionnaire, Ecoinvent, Ullmann's, ITB-Data, WAT, Tauron and impacted scientific literature sources.

Note

Specific information on application and other actions with these products are described in detail in the technical data sheet available on the producers website.

Raw materials and energy

No	Name of raw material	total used in production [kg]	used on product [kg/kg]		
	Leszcze (Gips budowlany)				
1	Gypsum stone	26 581 880,0	0,52		
2	FGD Synthetic gypsum	24 475 690,0	0,48		
	Leszcze (anhydryt)				
1	Gypsum stone	8 671 300,0	0,51		
2	FGD Synthetic gypsum	8 318 450,0	0,49		
	Konin (Gips budowlany)				
1	FGD Synthetic gypsum	141835653,8	100%		

Table 1. Raw materials

Table 2. Primary energy consumption for A3 module

Energy resource	Unit	total in production	used on product [unit/Mg]		
Leszcze					
electricity	kWh	4714857	31,6		
natural gas	m³	3151817,9	21,1		
Konin					
electricity	kWh	3349914	30,93		
water steam from EC	GJ	152610	1,41		

Emissions (LCI) and their impact on the environment

Table 3. Emissions into air generated during production stage A3

Air emission	Unit	total in production [Mg]	used on product [kg/Mg]	
	Le	szcze		
Dust	kg	4320,33	0,02899	
СО	kg	3569,99	0,0240	
CO ₂	kg	6049710	40,5922	
NO ₂	kg	11145,74	0,0748	
	Konin			
Dust	kg	693,41	0,00640	

Leszcze			
Water	m ³	2103	
BOD	mg/l	8,1	
COD	mg/l	24	
Suspended matter	mg/l	38	

Konin			
Water	m ³	852	
BOD	mg/l	8,1	
COD	mg/l	24	

Waste code	Unit	total in production [Mg]	used on product [kg/Mg]		
Leszcze					
Municipal wastes:	8,21	5,5E-05	Landfil/recycling		
Other watses:					
70208	0,0927	6,2E-07	re-using		
80313	0,0036	2,4E-08	recycyling		
080317	0,0072	4,8E-08	dengerous wastes		
101382	448,05	0,003	re-using		
130208	0,725	4,9E-06	dengerous wastes		
130899	0,291	1,95E-06	dengerous wastes		
150101	0,2884	1,94E-06	recycyling		
150102	0,10	7,08E-07	recycling		
150202	0,18	1,2E-06	dengerous wastes		
150203	0,25	1,68E-06	recycling		
160103	0,13	9,33E-07	Recycyling		
160119	0,0824	5,53E-07	Recycling		
160199	0,128	8,63E-07	Recycyling		
160601	0,028	1,9E-07	dengerous wastes		
161106	1,2	8,0E-06	reycling		
168001	0,011	7,9E-08	recycyling		
170405	6,9	4,63E-05	recycling		
	I	Konin			
Municipal wastes:	20,4	2,14044E-05	Landfil/recycling		
Other watses:					
101382	110,2	0,000115626	reycyling		
150101	6,21	6,51576E-06	Recycyling		
150102	2,34	2,45521E-06	Recycyling		
150202	0,61	6,40034E-07	dengerous wastes		
160103	0,2	2,09847E-07	recyling		
160601	0,15	1,57385E-07	dengerous wastes		

Table 5. Waste generated in the phase of product manufacturing A3	
---	--

Environmental characteristics (LCA)

Table 6. Environmental characteristic for milled gypsum stone- "Leszcze mine" (1kg)

	Envir	ronmer	ntal asses	sment in	nformati	on (MNI) – Modu	ıle not d	leclared	, MD – M	odule D	eclared,	INA – I	ndicate	or Not Asse	essed)
Pro	oduct sta	age	Constr prod	uction cess		[1	Use stag	e				End	of life		Benefits and loads beyond the system boundary
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	В5	B6	B7	C1	C2	C3	C4	D
MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
							Envi	onment	al impa	cts: 1 kg						
				Indicat	or					Jnit		A1	A	2	A3	A1-A3
				Indicat	01							A1	~	2	AJ	AI-AJ
Globa	al warmi	ing pote	ential						[kg (CO ₂ eq.]		0,005	3,00	E-05	0,007	0,011
Deple	etion po	tential o	of the stra	tospheric	ozone la	yer			[kg CF	C 11 eq.	2,	28E-10	3,42	E-11	3,17E-09	3,43E-09
Acidif	ication	potentia	al of soil a	nd water					[kg S	502 eq.]	1,	20E-05	2,87	E-07 8,95E-05		1,02E-04
Eutro	phicatio	on poter	ntial						[kg (P	O ₄) ³⁻ eq.]	2,	73E-06	3,26	E-08	2,60E-05	2,87E-05
Forma	ation po	otential	of troposp	heric ozo	ne				[kg Et	hene eq.]	1,	02E-06	1,21	E-08	4,01E-07	1,43E-06
Abiotic depletion potential (ADP-elements) for non-fossil resources								5	[kg	Sb eq.]	1,	20E-05	1,45	E-06	1,46E-05	2,81E-05
Abiotic depletion potential (ADP-fossil fuels) for fossil resources										[MJ]		0,01	3,96	E-04	0,078	0,084
						Envir	onment	al aspec		source u	se: 1 k	-	1			-1
Indicator									Unit		A1	A	2	A3	A1-A3	
			imary ene aw materia		ding rene	wable pr	imary en	ergy	[M]]			INA	IN	IA	INA	INA
Use o	of renew	able pri	imary ene	rgy resou	rces used	d as raw i	materials		[MJ]			INA INA		INA IN/		INA
			ole primar ources use				y energy	and	[M]			0,00	0,00		0,007	0,008
			le primary ed as raw			non-rene	ewable pr	imary	[MJ]			INA	INA		INA	INA
Use o	of non-re	enewab	le primary	energy r	esources	used as	raw mate	erials	I	[MJ]		INA	INA		INA	INA
			ewable pri resources				imary en	ergy	l	[MJ]		0,01	4,00	E-04	0,09	0,09
Use o	of secon	dary ma	aterial							[kg]		0,00	0,0	00	0,00	0,00
Use o	of renew	able se	condary fu	uels						[M]]		0,00	0,0	00	0,00	0,00
Use of non-renewable secondary fuels										[MJ]		0,00	0,0	00	0,00	0,00
Net use of fresh water								[dm³]	0	,0001	0,0	00	0,0004	0,0005	
					Other e	nvironm	ental inf	ormatio	n descri	bing was	ste cate	gories: 1	l kg			
				Indicat	or				l	Unit		A1	A	2	A3	A1-A3
											5,	00E-07		00	0	5,00E-07
	rdous w		•						[kg]				1,20E-07			
Non-ł	hazardo	us wast	e dispose	d						[kg]	6,	00E-06	1,20	E-07	1,94E-04	2,00E-04
Non-h Radio	hazardo bactive v	us wast vaste di	e dispose	d						[kg]	6,	0	0,0	00	0	0
Non-h Radio Comp	nazardo pactive v ponents	us wast vaste di for re-u	e dispose isposed use	d						[kg] [kg]	6,	0 0	0,0	00 00	0	0
Non-h Radio Comp Mater	nazardo pactive v ponents rials for	us wast vaste di for re-u recyclir	e dispose isposed use	d						[kg]	6,	0	0,0	00 00 E-08	0	0

Table 7. Environmental characteris	tic for gypsum	(dry powder) Leszcze	(1kg)
------------------------------------	----------------	----------------------	-------

MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
Pro	duct sta	age	Constr proc				I	Use stage	2				End o	of life		Benefits and loads beyond the system boundary

Environmen	tal impacts: 1 kg				
Indicator	Unit	A1	A2	A3	A1-A3
Global warming potential	[kg CO ₂ eq.]	0,006	2,29E-04	1,08E-01	0,115
Depletion potential of the stratospheric ozone layer	[kg CFC 11 eq.]	1,88E-09	6,50E-10	9,40E-10	3,47E-09
Acidification potential of soil and water	[kg SO ₂ eq.]	6,08E-05	1,67E-06	6,34E-05	1,26E-04
Eutrophication potential	[kg (PO ₄) ³⁻ eq.]	1,67E-05	2,95E-07	1,24E-05	2,93E-05
Formation potential of tropospheric ozone	[kg Ethene eq.]	9,00E-07	1,22E-07	5,90E-07	1,61E-06
Abiotic depletion potential (ADP-elements) for non-fossil resources	[kg Sb eq.]	1,96E-05	1,10E-05	7,06E-05	1,01E-04
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	[MJ]	0,063	3,02E-03	9,68E-01	1,035
Environmental aspe	cts on resource use	: 1 kg			
Indicator	Unit	A1	A2	A3	A1-A3
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	[M]	INA	INA	INA	INA
Use of renewable primary energy resources used as raw materials	[M]	INA	INA	INA	INA
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[M]	0,006	0,00	2,45E-02	0,030
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	[tm]	INA	INA	INA	INA
Use of non-renewable primary energy resources used as raw materials	[tm]	INA	INA	INA	INA
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[tm]	0,070	0,00	9,95E-01	1,07
Use of secondary material	[kg]	0,000	0,00	0,00	0,00
Use of renewable secondary fuels	[MJ]	0,000	0,00	0,00	0,00
Use of non-renewable secondary fuels	[MJ]	0,000	0,00	0,00	0,00
Net use of fresh water	[dm ³]	0,096	0,00	0,0137	0,11
Other environmental information	on describing waste	categories: 1	kg		
Indicator	Unit	A1	A2	A3	A1-A3
Hazardous waste disposed	[kg]	2,60E-07	0,00	2,50E-06	2,76E-06
Non-hazardous waste disposed	[kg]	1,88E-03	9,12E-07	8,82E-06	1,88E-03
Radioactive waste disposed	[kg]	0	0,00	0	0
Components for re-use	[kg]	0	0,00	0	0
Materials for recycling	[kg]	2,61E-08	3,82E-07	4,00E-06	4,40E-06
Materials for energy recovery	[kg]	0	0,00	0	0
Exported energy	[MJ]	0	0,00	0	0

	Envi	ronmer	ntal asses	sment in	nformati	on (MNC) – Modu	ule not d	leclared	, MD – M	lodule D	eclared,	INA – I	ndicato	or Not Ass	essed)
Prc	oduct st	age	Constr proc				I	Use stage	e				End	of life		Benefits and loads beyond the system boundary
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction - installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
							Envi	ronment	al impa	cts: 1 kg						
				Indicat	or					Unit		A1	Α	2	A3	A1-A3
Globa	al warmi	ing pote	ential						[kg (CO ₂ eq.]		0,006	2,29	E-04	1,12E-01	0,119
Deple	etion po	tential c	of the stra	tospheric	ozone lay	/er			[kg CF	C 11 eq.] 1,	85E-09	6,50	E-10	9,11E-10	3,41E-09
Acidif	ication	potentia	al of soil a	nd water					[kg S	50 ₂ eq.]	5,	99E-05	1,67	E-06	8,43E-05	1,46E-04
Eutro	phicatic	on poter	ntial						[kg (P	0 ₄)³⁻ eq.] 1,	64E-05	2,95	E-07	1,75E-05	3,43E-05
Form	ation po	otential	of troposp	heric ozo	ne					hene eq.		89E-07	1,22		1,80E-06	'
Abiotic depletion potential (ADP-elements) for non-fossil resources										Sb eq.]	1,	94E-05	1,10		6,78E-05	
Abiotic depletion potential (ADP-fossil fuels) for fossil resources Environmental as								al aspec		[MJ] source u	se: 1 ko	0,06 1	3,02	E-03	9,37E-01	1,003
				Indicat	or			-		Unit		A1	A	2	A3	A1-A3
			imary ene w materia		ding rene	wable pri	mary en	ergy	I	[MJ]		INA	IN	A	INA	INA
Use o	of renew	able pri	imary ene	rgy resou	rces used	l as raw r	naterials		[MJ]			INA		A	INA	INA
			ole primar urces use				/ energy	and	[M]]			0,01		0,00		0,030
			le primary ed as raw			non-rene	wable pr	imary	[M]			INA		INA		INA
Use o	of non-re	enewab	le primary	energy r	esources	used as	raw mate	erials	I	[MJ]		INA	IN	А	INA	INA
			ewable pr resources				mary en	ergy		[MJ]		0,07	0,0	00	9,61E-01	1,03
	of secon	<u> </u>								[kg]		0,00	0,0		0,00	0,00
			condary fu							[M]]		0,00	0,0		0,00	0,00
Use of non-renewable secondary fuels Net use of fresh water										[MJ] dm ³]		0,00 0,10	0,0		0,00 0,0132	0,00
Other environmental informa							ormatio	-		ste cate				0,0152	0,11	
				Indicat	or				I	Unit		A1	A	2	A3	A1-A3
Hazaı	rdous w	aste dis	posed					_		[kg]	2,	55E-07	0,0	00	2,50E-06	2,76E-06
			e dispose	d						[kg]	1,	92E-03	9,12	E-07	6,00E-06	1,92E-03
Radioactive waste disposed										[kg]		0	0,0		0	0
Components for re-use Materials for recycling								[kg]			0	0,0		0	0	
			recovery							[kg]	2,	56E-08 0	3,82		4,00E-06 0	0 4,40E-06
	rted ene		,							[kg] [MJ]	_	0	0,00		0	0
												0 0,00			U	U

Table 8. Environmental characteristic for anhydrite (dry powder) Leszcze (1kg)

material upply	luct sta	5	Constr proc	cess			, ,	Use stage	e				End	of life		loads beyond the system
			a	s												boundary
Raw	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
A1 A	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D

Table 8. Environmental characteristic for FGD gypsum (wet, from EC SO₂ reduction), Konin 1kg

MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND				
							Envi	ronmen	ental impacts: 1 kg											
				Indicate	or				l	Jnit		A1	Α	2	A3	A1-A3				
Global	l warmi	ing pote	ential						[kg (00 ₂ eq.]		0,001	1,50	E-05	3,79E-05	0,001				
Deplet	tion pot	tential o	of the stra	atospheric	ozone lay	/er			[kg CF	C 11 eq.] 1	43E-10	1,71	E-11	4,32E-11	2,03E-10				
Acidifi	cation	potentia	al of soil a	and water					[kg S	50 ₂ eq.]	1	58E-05	1,43E-07		3,62E-07	1,63E-05				
Eutrop	ohicatio	on poter	ntial						[kg (P	0 ₄) ³⁻ eq.] 3	56E-06	1,63	E-08	4,12E-08	3,62E-06				
Forma	ation po	otential	of tropos	pheric ozoi	ne				[kg Et	hene eq.] 3	05E-07	6,07	E-09	1,53E-08	3,26E-07				
Abiotio	c deple	tion pot	tential (A	DP-elemen	ts) for no	on-fossil	resource	s	[kg	Sb eq.]	7	89E-06	7,23	E-07	1,83E-06	1,04E-05				
Abiotio	c deple	tion pot	tential (A	DP-fossil fu	uels) for f	ossil res	ources		[[M]]		0,04	1,98	E-04	5,00E-04	0,041				
						Envi	ronment	al aspec	ts on re	source u	se: 1 k	9								
				Indicat	or				l	Jnit		A1	Α	2	A3	A1-A3				
			imary en aw mater	ergy excluo ials	ding rene	wable pr	imary en	ergy	[[U]		INA	IN	A	INA	INA				
Use of	f renew	able pr	imary en	ergy resou	rces used	l as raw	materials	;	[[M]]		INA	IN	A	INA	INA				
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)									[[U]		0,00	0,0	00	5,00E-05	0,004				
				y energy e v materials		non-rene	ewable pi	rimary	[[U]		INA	IN	A	INA	INA				
Use of	f non-re	enewab	le primar	y energy r	esources	used as	raw mate	erials	ĺ	[U]		INA	INA		INA	INA				
				rimary ene s used as r			imary en	ergy	[[UN]		0,042	0,00		6,00E-04	0,045				
Use of	f secon	dary m	aterial							[kg]		0,00	0,0	00	0,00	0,00				
Use of	f renew	able se	condary	fuels					[[U]		0,00	0,0	00	0,00	0,00				
Use of	f non-re	enewab	le secono	lary fuels					[[U]		0,00	0,0	00	0,00	0,00				
Net us	se of fre	esh wat	er						[0	dm³]		0,20	0,0	00	0,0003	0,20				
					Other er	nvironm	ental inf	formatio	n descri	bing was	ste cate	gories: 1	kg							
				Indicate	or				l	Jnit		A1	Α	2	A3	A1-A3				
Hazar	dous w	aste dis	sposed							[kg]	0,	00E+00	0,0	00	0	0,00E+00				
Non-h	azardo	us wast	e dispose	ed					[kg]			0,0037	5,40	E-06	1,00E-04	3,71E-03				
Radioa	active v	vaste d	isposed						[kg]			0,00	0,0	00	0,00	0,00				
Comp	onents	for re-u	ise						[kg]			0,00				0,00	0,00			
Materi	ials for	recyclir	ng							[kg]		0,00	0,00		0,00	0,00				
Materi	ials for	energy	recovery	/						[kg]		0,00	0,00		0,00	0,00				
Export	ted ene	ergy							1	[נא		0,00	0,00		0,00	0,00				

Table 8. Environmental characteristic for FGD gypsum (dry), Konin 1kg

	Envir	onmer	ntal asses	ssment i	nformati	on (MNI	D – Modu	ule not d	leclared	, MD – M	lodule D	eclared,	INA – I	ndicator	Not Ass	sessed)
Pro	duct sta	age		ruction cess		Use stage End of life							Benefits and loads beyond the system boundary			
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recycling potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

Environmen	ital impacts: 1 kg				
Indicator	Unit	A1	A2	A3	A1-A3
Global warming potential	[kg CO ₂ eq.]	0,002	7,50E-06	0,003	0,004
Depletion potential of the stratospheric ozone layer	[kg CFC 11 eq.]	2,64E-10	8,55E-12	3,75E-11	3,10E-10
Acidification potential of soil and water	[kg SO ₂ eq.]	2,12E-05	7,17E-08	4,35E-06	2,57E-05
Eutrophication potential	[kg (PO ₄) ³⁻ eq.]	4,70E-06	8,16E-09	1,05E-06	5,76E-06
Formation potential of tropospheric ozone	[kg Ethene eq.]	4,24E-07	3,04E-09	2,34E-07	6,61E-07
Abiotic depletion potential (ADP-elements) for non-fossil resources	[kg Sb eq.]	1,36E-05	3,62E-07	2,00E-05	3,39E-05
Abiotic depletion potential (ADP-fossil fuels) for fossil resources	[MJ]	0,053	9,90E-05	0,023	0,076
Environmental aspe	cts on resource use	: 1 kg			
Indicator	Unit	A1	A2	A3	A1-A3
Use of renewable primary energy excluding renewable primary energy resources used as raw materials	[M]]	INA	INA	INA	INA
Use of renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA
Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[M]	0,005	0,00E+00	1,400 ¹	1,405
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	[MJ]	INA	INA	INA	INA
Use of non-renewable primary energy resources used as raw materials	[M]	INA	INA	INA	INA
Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)	[M]	0,063	1,09E-04	0,03	0,09
Use of secondary material	[kg]	0,000	0,00E+00	0,00	0,00
Use of renewable secondary fuels	[MJ]	0,000	0,00E+00	0,00	0,00
Use of non-renewable secondary fuels	[MJ]	0,000	0,00E+00	0,00	0,00
Net use of fresh water	[dm ³]	0,261	9,90E-06	0,0078	0,2684
Other environmental information	on describing waste	categories: 1	kg		
Indicator	Unit	A1	A2	A3	A1-A3
Hazardous waste disposed	[kg]	0,000	0,00E+00	7,90E-10	7,90E-10
Non-hazardous waste disposed	[kg]	0,005	2,70E-06	7,95E-05	4,90E-03
Radioactive waste disposed	[kg]	0,000	0,00E+00	0	0
Components for re-use	[kg]	0,000	0,00E+00	0	0
Materials for recycling	[kg]	0,000	0,00E+00	1,59E-05	1,59E-05
Materials for energy recovery	[kg]	0,000	0,00E+00	0	0
Exported energy	[M]	0,000	0,00E+00	0	0

Exported energy [MJ] 0,000 0,00E+00 0 0 ¹steam as a heat waste form electricity production, used as the heat pump process is specifically considered as a renewable resource in the gypsum production

Verification

The process of verification of an EPD is in accordance with EN ISO 14025, clause 8 and ISO 21930, clause 9. After verification, this EPD is valid for a 5-year-period. EPD does not have to be recalculated after 5 years, if the underlying data have not changed significantly.

The basis for LCA analysis was EN 15804
Independent verification corresponding to ISO 14025 & 8.3.1.
🕱 external 🗌 internal
Verification of EPD: dr eng. Aleksander Panek
LCI audit and input data verification: msc eng. Dominik Bekierski
LCA: dr eng. Michał Piasecki
Verification of procedures and declaration: dr eng. Halina Prejzner

Normative references

- ISO 14025:2006, Environmental management Type III environmental declarations Principles and procedure.
- ISO 21930:2007, Sustainability in building and construction Environmental declaration of building products.
- ISO 14044:2006, Environmental management Life cycle assessment Requirements and guidelines.
- ISO 15686-1:2000, Buildings and constructed assets Service life planning Part 1: General principles
- ISO 15686-8:2008, Buildings and constructed assets Service life planning Part 8: Reference service life
- EN 15804:2012, Sustainability in construction works Environmental product declarations Core rules for the product category of construction products.

Zakład Fizyki Cieplnej, Instalacji Sanitarnych i Środowiska 02-656 Warszawa, ul. Ksawerów 21

ŚWIADECTWO nr 018/2014 DEKLARACJI ŚRODOWISKOWEJ III TYPU

Wyroby:

Gips budowlany, Gips budowlany syntetyczny i Anhydryt

Wnioskodawca:

DOLINA NIDY Sp. z o.o.

28-400 Pińczów, Leszcze 15

potwierdza się poprawność ustalenia danych uwzględnionych przy opracowaniu Deklaracji Środowiskowej III typu oraz zgodność z wymaganiami normy

EN 15804:2012

Zrównoważoność obiektów budowlanych. Deklaracje środowiskowe wyrobów. Podstawowe zasady kategoryzacji wyrobów budowlanych.

Niniejsze świadectwo, wydane po raz pierwszy 10 marca 2014 r. jest ważne 5 lat, lub do czasu zmiany wymienionej Deklaracji Środowiskowej

Kierowni Zakładu Fizyki Ciepinej mych i at

Dyrektar Instytutu Techniki Budowlanei Jan Bobrowicz

Warszawa, marzec 2014 r.