





Issuance date: 14.07.2023 Validity date: 14.07.2028

# Polios PET 2562



#### Owner of the EPD:

Purinova Sp. z o.o. Address: Fordońska 74, 85-719 Bydgoszcz, Polska Tel.: +48 52 56 16 710 Website: <u>https://purinova.com/</u> Contact: <u>purinova@purinova.com</u>

#### **EPD Program Operator:**

Instytut Techniki Budowlanej (ITB) Address: Filtrowa 1, 00-611 Warsaw, Poland Website: <u>www.itb.pl</u> Contact: Michał Piasecki <u>m.piasecki@itb.pl</u> <u>energia@itb.pl</u>

ITB is the verified member of The European Platform for EPD program operators and LCA practitioner www.eco-platform.org

#### **Basic information**

This declaration is the Type III Environmental Product Declaration (EPD) based on EN 15804+A2 and verified according to ISO 14025 by an external auditor. It contains the information on the impacts of the declared construction materials on the environment and their aspects verified by the independent body according to ISO 14025. Basically, comparison or evaluation of EPD data is possible only if all the compared data were created according to EN 15804+A2.

Life cycle analysis (LCA): A1-A3 in accordance with EN 15804+A2 (Cradle-to-Gate)

The year of preparing the EPD: 2023 Service Life: N/A PCR: ITB-PCR A Declared unit: 1 kg Reasons for performing LCA: B2B Representativeness: Poland, European, 2022

#### MANUFACTURER

Purinova is the manufacturer of polyester polyols and polyurethane systems. For many years, company has developed own know-how and implemented modern technologies in international markets. The specific products are used in the construction, refrigeration and automotive industries. Continuous development of the designed or acquired technologies, as well as expansion of the manufacturing



base, allows to supply customers with high quality products. The manufacturing site – located in Bydgoszcz (Poland) – apart from the machinery stock itself, is comprised primarily of a team endowed with extensive experience in the polyurethane industry. Automation of manufacturing processes of polyester polyols gives the opportunity to finalize orders in a short time. The total capacity of active apparatuses is as much as 800 m<sup>3</sup>. Purinova is able to simultaneously produce many variants of products. Separate production lines ensure production continuity.

Purinova has extensive experience in servicing domestic and international transport. Company provides road, air, sea and intermodal transport (LTL, FTL, FCL, LCL). The warehouses in Europe and the USA (Houston, New Jersey, Bydgoszcz, Tarnów) gives us the potentiality to appropriate coordinate the activities in the supply chain. Company is cooperating with specialized custom agencies - this fact gives all customers a guarantee of proper provision of export services also outside the European Union.

#### **PRODUCTS DESCRIPTION**

Polios PET 2562 covered by this EPD is an intermediate product used in the production of sandwich panels. The further course of the life cycle of this product, including the end of its life cycle, determines for the production of a panel of what design it will be used. The product has a certificate number 326/2022 Environmental Declaration of Type II issued by the Building Research Institute confirming that the product contains a minimum of 45% recycled raw material.. The basic properties are presented in the below table.

| State of concentration         | Liquid                                            |
|--------------------------------|---------------------------------------------------|
| Color                          | From straw to yellow                              |
| Flammability of the material   | Supports combustion                               |
| Solubility                     | Insoluble in water, soluble in ketones and esters |
| Hydroxyl number                | 240 – 260 [mg KOH/g]                              |
| Acid number                    | 2,0 – 3,0 [mg KOH/g]                              |
| Water content no more than     | 0,1 [%]                                           |
| Viscosity at 25 °C             | 2500 – 4500 [m Pa s]                              |
| Renewable and recycled content | min. 50 %                                         |

All additional technical information about the product is available on the manufacturer's website.

# LIFE CYCLE ASSESSMENT (LCA) – general rules applied

# Unit

The declared unit is 1 kg of product of Polios PET 2562.

# System boundary

Modules A1-A3 are taken into consideration in the LCA: A1 Production of preliminary products, A2 Transport to plant, A3 Production (incl. provision of energy, production of packaging as well as auxiliaries and consumables, waste treatment). The declaration is therefore from "cradle to gate". According to the standard EN 15804, products used for the production of other products should be declared at the production stage. Energy and water consumption, emissions as well as information on generated wastes were inventoried and were included in the calculation. It can be assumed that the total sum of omitted processes does not exceed 5% of all impact categories. In accordance with EN 15804+A2, machines and facilities (capital goods) required for the production as well as transportation of employees were not included in LCA.

# Allocation

The allocation rules used for this EPD are based on general ITB's document PCR A (EN 15804+A2). Input and output data from the production is inventoried and allocated to the production on the mass basis. The declared product recipe was used for the calculations, based on specific substances included in the production.

# **System limits**

All raw materials submitted for the formulations and production data were taken into consideration. In the assessment, all available data from production have been considered, i.e. all raw materials/elements used as per formulation process, utilized thermal energy for heating, and electric power consumption. Thus, material and energy flows contributing less than 1 % of mass or energy have been considered. It can be assumed that the total sum of neglected processes does not exceed 1 % of energy usage and mass per modules A. Machines and facilities required during production are neglected. The production of etiquettes/printing was not considered.

## Modules A1 and A2: Raw materials supply and transport

Typically, the products covered by this EPD contain the following base materials: reycled PET colorless transparent flake, PET flakes (raw material) are 100% recycled material from PET bottles. Aromatic polyester polyol is obtained using recycled PET. Raw materials come from Polish and international suppliers. Data on transport of the different products to the manufacturing plant is collected and modelled for factory by assessor. Means of transport include trucks and Polish and European fuel averages are applied. More detailed information is available in the respective manufacturer's documentation (e.g. product data sheets).

## Module A3: Production

The production/formulation is done by Purinova plants in Poland. The production takes place in stages. In the first stages as presented in Figure 1. Packagings are the light drums with a capacity of 50, 200 dm<sup>3</sup> or stainless steel cisterns.



Figure 1. Manufacturing process scheme

# Data collection period

The data for manufacture of the declared products refer to period between 01.01.2022 – 31.12.2022 (1 year). The life cycle assessments were prepared for Poland and Europe as reference area.

# Data quality

The data selected for LCA originate from ITB-LCI questionnaires completed by Purinova and verified during data audit. No data collected is older than five years and no generic datasets used are older than ten years. The representativeness, completeness, reliability, and consistency is judged as good. The background data for the processes come from the following resources database Ecoinvent v.3.9.1. Specific (LCI) data quality analysis was a part of the input data verification. Where no background data was available, data gaps were complemented by manufacturer information and literature research.

#### Assumptions and estimates

The impacts of the representative products were aggregated using weighted average. The compositions for the External product and Internal foil were averaged on the basis of recipes.

## **Calculation rules**

LCA was performed using ITB-LCA tool developed in accordance with EN15804+A2. Emission of greenhouse gases was calculated using the IPCC 2013 GWP method with a 100-year horizon. Emission of acidifying substances, Emission of substances to water contributing to oxygen depletion, Emission of gases that contribute to the creation of ground-level ozone, Abiotic depletion, and ozone depletion emissions where all calculated with the CML-IA baseline method

#### Additional information

Polish electricity (Eocinvent v 3.9.1 supplemented by actual national Kobize data) emission factor used is 0.702 kg CO<sub>2</sub>/kWh. As a general rule, no particular environmental or health protection measures other than those specified by law are necessary.

#### **Health aspects**

Does not contain CFC, HCFC.

# LIFE CYCLE ASSESSMENT (LCA) – Results

#### **Declared unit**

The declaration refers to declared unit (DU) - 1 kg of Polios PET 2562 produced in Poland. The following life cycle modules (table 1) were included in the analysis. The following tables 2-5 show the environmental impacts of the life cycle of selected modules (A1-A3).

Table 1. System boundaries for the environmental characteristic of the product.

|                     | Environmental assessment information (MD – Module Declared, MND – Module Not Declared, INA – Indicator Not Assessed) |               |                                   |                                      |     |             |        |             |               |                        |                       |                           |           |                                                              |          |                                       |
|---------------------|----------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------|--------------------------------------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|---------------------------|-----------|--------------------------------------------------------------|----------|---------------------------------------|
| Pro                 | oduct sta                                                                                                            | age           | Consti<br>proc                    | ruction<br>cess                      |     | Use stage   |        |             |               |                        | End of life           |                           |           | Benefits<br>and loads<br>beyond<br>the<br>system<br>boundary |          |                                       |
| Raw material supply | Transport                                                                                                            | Manufacturing | Transport to construction<br>site | Construction-installation<br>process | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | Deconstruction demolition | Transport | Waste processing                                             | Disposal | Reuse-recovery-recycling<br>potential |
| A1                  | A2                                                                                                                   | A3            | A4                                | A5                                   | B1  | B2          | B3     | B4          | В5            | B6                     | B7                    | C1                        | C2        | С3                                                           | C4       | D                                     |
| MD                  | MD                                                                                                                   | MD            | MND                               | MND                                  | MND | MND         | MND    | MND         | MND           | MND                    | MND                   | MND                       | MND       | MND                                                          | MND      | MND                                   |

| Indicator                                                               | Unit                   | A1        | A2       | A3       | A1-A3     |
|-------------------------------------------------------------------------|------------------------|-----------|----------|----------|-----------|
| Global Warming Potential                                                | eq. kg CO <sub>2</sub> | 1.39E+00  | 3.61E-02 | 8.24E-02 | 1.51E+00  |
| Greenhouse potential - fossil                                           | eq. kg CO <sub>2</sub> | 1.49E+00  | 3.60E-02 | 8.22E-02 | 1.60E+00  |
| Greenhouse potential - biogenic                                         | eq. kg CO <sub>2</sub> | -9.81E-02 | 2.42E-05 | 1.87E-04 | -9.79E-02 |
| Global warming potential - land use and land use change                 | eq. kg CO <sub>2</sub> | 6.61E-03  | 1.01E-09 | 1.16E-05 | 6.62E-03  |
| Stratospheric ozone depletion potential                                 | eq. kg CFC 11          | 1.91E-08  | 6.99E-04 | 3.88E-09 | 6.99E-04  |
| Soil and water acidification potential                                  | eq. mol H+             | 6.03E-03  | 7.80E-07 | 8.45E-04 | 6.88E-03  |
| Eutrophication potential - freshwater                                   | eq. kg P               | 3.43E-03  | 1.75E-04 | 1.10E-04 | 3.72E-03  |
| Eutrophication potential - seawater                                     | eq. kg N               | 2.06E-03  | 1.93E-03 | 1.67E-04 | 4.16E-03  |
| Eutrophication potential - terrestrial                                  | eq. mol N              | 1.25E-02  | 5.22E-04 | 1.66E-03 | 1.47E-02  |
| Potential for photochemical ozone synthesis                             | eq. kg NMVOC           | 5.04E-03  | 2.28E-08 | 4.55E-04 | 5.50E-03  |
| Potential for depletion of abiotic resources - non-<br>fossil resources | eq. kg Sb              | 1.08E-05  | 2.89E-01 | 3.24E-08 | 2.89E-01  |
| Abiotic depletion potential - fossil fuels                              | MJ                     | 3.66E+01  | 8.15E-04 | 1.23E+00 | 3.78E+01  |
| Water deprivation potential                                             | eq. m <sup>3</sup>     | 1.32E+00  | 2.03E-03 | 1.98E-02 | 1.34E+00  |

*Table 2. Life cycle assessment (LCA) results of the product – environmental impacts (DU: 1 kg)* 

Table 3. Life cycle assessment (LCA) results of the product – additional impacts indicators (DU: 1 kg)

| Indicator                                                        | Unit                 | A1-A3 |
|------------------------------------------------------------------|----------------------|-------|
| Particulate matter                                               | disease<br>incidence | INA   |
| Potential human exposure efficiency relative to U235             | eg. kBq U235         | INA   |
| Potential comparative toxic unit for ecosystems                  | CTUe                 | INA   |
| Potential comparative toxic unit for humans (cancer effects)     | CTUh                 | INA   |
| Potential comparative toxic unit for humans (non-cancer effects) | CTUh                 | INA   |
| Potential soil quality index                                     | dimensionless        | INA   |

Table 4. Life cycle assessment (LCA) results of the the product - the resource use (DU: 1 kg)

| Indicator                                                                                                            | Unit | A1       | A2       | A3       | A1-A3    |
|----------------------------------------------------------------------------------------------------------------------|------|----------|----------|----------|----------|
| Consumption of renewable primary energy -<br>excluding renewable primary energy sources used<br>as raw materials     | MJ   | 3.26E+00 | 6.71E-45 | 8.40E-02 | 3.35E+00 |
| Consumption of renewable primary energy resources used as raw materials                                              | MJ   | 2.34E+00 | 2.03E-03 | 0.00E+00 | 2.34E+00 |
| Total consumption of renewable primary energy resources                                                              | MJ   | 5.61E+00 | 2.89E-01 | 8.40E-02 | 5.98E+00 |
| Consumption of non-renewable primary energy -<br>excluding renewable primary energy sources used<br>as raw materials | MJ   | 4.26E+00 | 0.00E+00 | 1.23E+00 | 5.48E+00 |
| Consumption of non-renewable primary energy resources used as raw materials                                          | MJ   | 3.26E+01 | 2.89E-01 | 0.00E+00 | 3.29E+01 |
| Total consumption of non-renewable primary energy resources                                                          | MJ   | 3.68E+01 | 1.36E-04 | 1.23E+00 | 3.80E+01 |
| Consumption of secondary materials                                                                                   | kg   | 9.71E-01 | 2.96E-07 | 1.74E-04 | 9.71E-01 |
| Consumption of renew. secondary fuels                                                                                | MJ   | 4.34E-05 | 0.00E+00 | 7.26E-07 | 4.41E-05 |
| Consumption of non-renewable secondary fuels                                                                         | MJ   | 0.00E+00 | 1.60E-05 | 0.00E+00 | 1.60E-05 |
| Net consumption of freshwater                                                                                        | m3   | 2.91E-02 | 1.55E-04 | 2.91E-03 | 3.21E-02 |

Table 5. Life cycle assessment (LCA) results of the product – waste categories (DU: 1 kg)

| Indicator                     | Unit | A1       | A2       | A3       | A1-A3    |
|-------------------------------|------|----------|----------|----------|----------|
| Hazardous waste               | kg   | 3,44E-02 | 3,15E-03 | 8,76E-03 | 4,63E-02 |
| Non-hazardous waste           | kg   | 2,66E+00 | 3,14E-08 | 5,29E-01 | 3,19E+00 |
| Radioactive waste             | kg   | 4,87E-05 | 0,00E+00 | 1,67E-07 | 4,89E-05 |
| Components for re-use         | kg   | 0,00E+00 | 3,15E-05 | 0,00E+00 | 3,15E-05 |
| Materials for recycling       | kg   | 7,13E-04 | 4,96E-09 | 2,05E-03 | 2,77E-03 |
| Materials for energy recovery | kg   | 8,52E-04 | 2,12E-05 | 1,56E-08 | 8,73E-04 |
| Exported Energy               | MJ   | 1,66E-01 | 5,42E-02 | 1,75E-03 | 2,22E-01 |

#### Verification

The process of verification of this EPD is in accordance with ISO 14025 and ISO 21930. After verification, this EPD is valid for a 5-year-period. EPD does not have to be recalculated after 5 years, if the underlying data have not changed significantly.

| The basis for LCA analysis was EN 15804 and ITB PCR A                          |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|--|--|--|--|--|--|
| Independent verification corresponding to ISO 14025 (sub clause 8.1.3.)        |  |  |  |  |  |  |
| x external internal                                                            |  |  |  |  |  |  |
| External verification of EPD: Halina Prejzner, PhD. Eng.                       |  |  |  |  |  |  |
| LCI data collection: M.Sc. eng. Michał Chwedaczuk                              |  |  |  |  |  |  |
| LCA, LCI audit and input data verification: Michał Piasecki, PhD., D.Sc., Eng. |  |  |  |  |  |  |

Note: The declaration owner has the sole ownership, liability, and responsibility for the declaration. Declarations within the same product category but from different programmes may not be comparable. Declarations of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025. Depending on the application, a corresponding conversion factor such as the specific weight per surface area must be taken into consideration.

#### **Normative references**

- ITB PCR A v 1.6. General Product Category Rules for Construction Products
- ISO 14025:2006, Environmental labels and declarations Type III environmental declarations Principles and procedures
- ISO 21930:2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services
- ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- ISO 15686-1:2011 Buildings and constructed assets Service life planning Part 1: General principles and framework
- ISO 15686-8:2008 Buildings and constructed assets Service life planning Part 8: Reference service life and service-life estimation
- EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- ISO 14067:2018 Greenhouse gases Carbon footprint of products Requirements and guidelines for quantification
- PN-EN 15942:2012 Sustainability of construction works Environmental product declarations Communication format business-to-business





Thermal Physics, Acoustics and Environment Department 02-656 Warsaw, Ksawerów 21

# CERTIFICATE № 482/2023 of TYPE III ENVIRONMENTAL DECLARATION

Products:

Polios PET 2562

Manufacturer:

Purinova Sp. z o.o. ul. Fordońska 74, 85-719 Bydgoszcz, Poland

confirms the correctness of the data included in the development of Type III Environmental Declaration and accordance with the requirements of the standard

# EN 15804+A2

Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products.

> This certificate, issued on 14<sup>a</sup> July 2023 is valid for 5 years or until amendment of mentioned Environmental Declaration

Head of the Thermal Physic, Acoustics and Environment Department Multur - Multure Agnieszka Winkler-Skalma, PhD



Deputy Director for Research and Innovation ican Krzysztof Kuczyński, PhD

Warsaw, July 2023