

Issuance date: 22.04.2024 Validity date: 22.04.2029

Sandwich panels with PU core

Owner of the EPD:

Europanels Sp. z o.o. Address: Inflancka 5/81 00-189 Warszawa, Poland Contact: kk@europanels.pl Website: www.europanels.pl

EPD Program Operator:

Instytut Techniki Budowlanej (ITB) Address: Filtrowa 1 00-611 Warsaw, Poland Website: www.itb.pl Contact: energia@itb.pl

ITB is the verified member of The European Platform for EPD program operators and LCA practitioner www.eco-platform.org

Basic information

This declaration is the Type III Environmental Product Declaration (EPD) based on EN 15804+A2 and verified according to ISO 14025 by an external auditor. It contains the information on the impacts of the declared construction materials on the environment. Their aspects were verified by the independent body according to ISO 14025. Basically, a comparison or evaluation of EPD data is possible only if all the compared data were created according to EN 15804+A2.

Life cycle analysis (LCA): A1-A3, C1-C4 and D modules in accordance with EN 15804+A2 (Cradle-to-Gate with options)

The year of preparing the EPD: 2024 Product standards: EN 14509: 2013

Service Life: 25 years PCR: ITB-PCR A, v. 1.6 Declared unit: 1 m²

Reasons for performing LCA: B2B Representativeness: Polish, European

MANUFACTURER

Europanels Sp. z o.o. have been active over 20 years now with the main production facility located in Latkowo, near Inowrocław city (central Poland). Europanels is focused on production, marketing, sales, distribution of panels and customer relations.

The Europanels Sp. z o.o. is a supplier of construction systems: mainly wall and roof sandwich panels with polyurethane (PUR/PIR) and polystyrene (EPS) core and products' development (R&D). Additional offer range consists of an insulation boards for building thermo-modernization, trapezoidal sheets, assembly accessories, screws and sealants, metal flashings, gutters, windows PCV/ALU, gates and steel.

Figure 1. A view of Europanels production plant located in Latkowo (Poland).

PRODUCTS DESCRIPTION AND APPLICATION

Wall sandwich panels PU

PolTherma DS – wall sandwich panel PU

Modular width: 1025 mm

Thickness: 60, 80, 100, 120, 160

Contact type: hidden joint

Core: rigid PU Europan PU + Wall System Core (PIR)

PolTherma TS – wall sandwich panel PU

Modular width: 1000, 1100, 1130, 1150 mm

Thickness: 40; 50; 60; 80; 100; 120; 140; 160; 180; 200

Contact type: visible joint - standard

Fire resistance: El 30

Core: rigid PU Europan PU + Wall System Core (PIR)

PolTherma CS - cold storage panel PU

Modular width: 1000, 1100, 1130, 1150 mm

Thickness: 120; 160; 200

Contact type: visible joint - standard

Core: rigid PU Europan PU + Wall System Core (PIR)

PolTherma PS - wall sandwich panel PU

Modular width: 1025 mm

Thickness: 60; 80; 100; 120; 160

Contact type: hidden joint

Core: rigid PU Europan PU + Wall System Core (PIR)

Roof sandwich panels - PU

PolDeck BD - roof sandwich panel PU

Modular width: 1100 mm

Thickness: 80/105; 100/125; 120/145 Contact type: visible joint - standard

Fire resistance: RE 45 / REI 20

Core: Europan PU Roof System Core

PolDeck TD – roof sandwich panel PU

Modular width: 1065 mm

Thickness: 40/75; 60/95; 80/115; 100/135;

120/155; 145/180; 165/200

Contact type: visible joint - standard

Fire resistance: RE 120 (REI 15); RE 60 (REI 30)

Core: Europan PU Roof System Core

PolDeck MD - roof sandwich panel PU

Modular width: 1060 mm

Thickness: 40/75; 60/95; 80/115; 100/135; 120/155

Contact type: visible joint - standard Core: Europan PU Roof System Core

More information can be found on the Europanels Sp. z o.o. website : https://www.europanels.pl

LIFE CYCLE ASSESSMENT (LCA) – general rules applied

Declared Unit

The declaration refers to declared unit (DU) – 1 m² of sandwich panel with PU core

Allocation

The allocation rules used for this EPD are based on general ITB PCR A, v. 1.6. Production of sandwich panels with PU core is a line process conducted in the factory of Europanels Sp. z o.o., located in Latkowo (Poland). Allocation was done on product mass basis.

All impacts from raw materials extraction and processing are allocated in module A1 of LCA. Impacts from the Europanels Sp. z o.o. production were inventoried on the annual production volume expressed in mass units. Water and energy consumption, associated emissions and generated wastes are allocated to module A3. Packaging materials were takien into consideration.

System limits

The life cycle analysis (LCA) of the declared products covers: product stage – modules A1-A3, end of life – modules C1-C4 and benefits and loads beyond the system boundary – module D (cradle-to-gate with options) in accordance with EN 15804+A2 and ITB PCR A, v. 1.6. All materials and energy consumption inventoried in factory were included in calculation. Office impacts were also taken into consideration. In the assessment, all significant parameters from gathered production data were inventoried and were included in the calculations, i.e. all material used per formulation, utilised thermal energy, internal fuel and electric power consumption, direct production waste, water consumption and all available emission measurements.

It can be assumed that the total sum of omitted processes does not exceed 5% of all impact categories. In accordance with EN 15804+A2, machines and facilities (capital goods) required for the production as well as transportation of employees were not included in LCA.

Modules A1 and A2: Raw materials supply and transport

Raw materials such as steel foil, polyol, isocyanate, elastic materials, additives, ancillary materials and packaging materials come from both local and foreign suppliers. Means of transport include small trucks (< 10 t e.g. couriers) and big trucks (> 16 t) are applied. European standards for average combustion were used for calculations.

Module A3: Production

A scheme of the sandwich panels with PU core production process is presented in Figure 2. Raw materials such as steel foil, polyol, isocyanate, elastic materials are delivered to factory located in Latkowo, where are manufacturing in a few step process including processing of steel foil profiling and facing, PU injection, lamination processing and cutting the panels. Then the gates are packing, palleting and shipment.

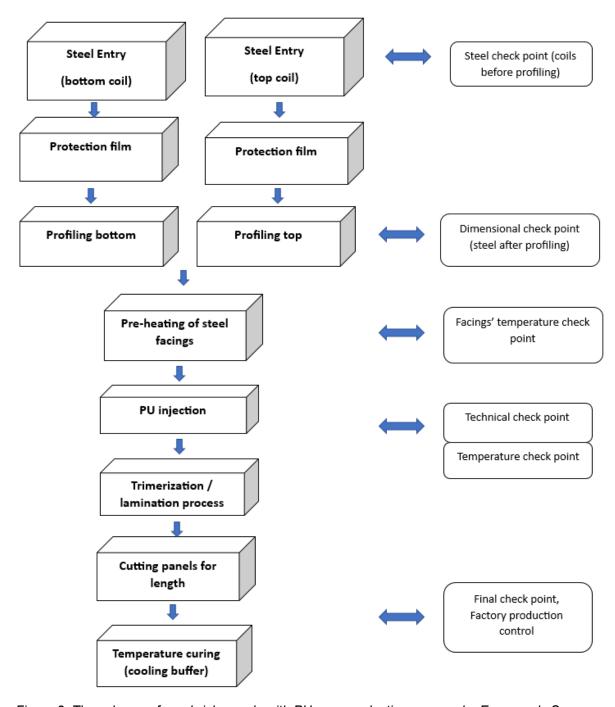


Figure 2. The scheme of sandwich panels with PU core production process by Europanels Sp. z o.o.

Modules C1-C4 and D: End-of-life (EoL)

It is assumed that at the end-of-life, 100% of sandwich panels with PU core are demounted using electric tools (module C1) and is transported to waste processing plant which is 100 km away, on 16-32 t lorry EURO 5 (module C2). It is assumed that 98% of steel foil are recycled and 60% of the recovered PU cores are recovery. The residue wastes are forwarded to a landfill in the form of mixed construction and demolition wastes (40% mineral wool and 2% steel plates). End-of-life scenario was summarized in Table 1. Environmental burdens declared in module C4 are associated with waste-specific emissions to air and groundwater. A potential credit resulting from the recycling of the steel scrap were calculated using World Steel Association approach and are presented in module D.

Table 1. End-of-life scenario for sandwich panels with PU core panels manufactured by Europanels Sp. z o.o.

Material	Waste processing (energy / material recovery) Landfilling				
Steel element	0%	98%	2%		
PU core	60%	0%	40%		

Data quality

The data selected for LCA analysis originates from ITB-LCI questionnaires completed by Europanels Sp. z o.o. using the inventory data, ITB database, Ecoinvent database v. 3.10 and KOBiZE. KOBiZE data is supplemented with Ecoinvent v. 3.10 data on the national electricity mix impact where no specific indicator data is provided. No specific data collected is older than five years and no generic datasets used are older than ten years. The representativeness, completeness, reliability, and consistency are judged as good.

Data collection period

Primary data provided by Europanels Sp. z o. o. covers a period of 01.01.2022 – 31.12.2022 (1 year). The life cycle assessments were prepared for Poland and Europe as reference area.

Assumptions and estimates

The impacts of the representative of roof and wall sandwich panels with PU core were inventoried and calculated based on consumption for all these products presented in Tables 4-7 for the PU with densities of 37 kg/m³ and thickness of 100 mm. Conversion factors for different panel thicknesses are presented in Table 2.

Table 2. Conversion factors for the estimation of environmental impact for different panel thicknesses about density of 37 kg/m³. Multiply the LCA-result of each impact category in the environmental impact table with the corresponding factors.

	Con	version fa	ctors for	different p	anel thick	nesses ab	out density	of 37 kg/n	n³	
Panel thickness	40 mm	50 mm	60 mm	80 mm	100 mm	120 mm	145 mm	160 mm	165 mm	200 mm
Conversion factor	1.41	1.32	1.24	1.11	1.00	0.91	0.82	0.77	0.76	0.67

Calculation rules

LCA was performed using ITB-LCA tool developed in accordance with EN 15804 + A2.

Databases

The data for the processes comes from Ecoinvent v. 3.10 and ITB-Database. Specific data quality analysis was a part of external audit. Polish electricity mix used (production) is 0.685 kg CO₂/kWh (KOBiZE 2023).

LIFE CYCLE ASSESSMENT (LCA) - Results

Declared unit

The declaration refers to declared unit (DU) -1 m^2 of roof and wall sandwich panels with PU core about density of 37 kg/m³ and thickness of 100 mm. Conversion factors for different panel thickness are presented above (Table 2).

Table 3. System boundaries for the environmental characteristic of sandwich panels with PU core production process by Europanels Sp. z o.o.

E	nviron	menta	l assess	sment in	formati	on (MD		e Decla ssessed		D – Mod	lule Not	Decla	red, IN	IA – In	dicato	r Not
Prod	uct sta	ge	Constr prod				l	Jse stag	e				End	of life		Benefits and loads beyond the system boundary
Raw material supply	Transport	Manufacturing	Transport to construction site	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse-recovery- recyding potential
A1	A2	А3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	СЗ	C4	D
MD	MD	MD	MND	MND	MND	MND	MND	MND	MND	MND	MND	MD	MD	MD	MD	MD

Table 4. Life cycle assessment (LCA) results for sandwich panels with PU core about density of 37 kg/m³ and thickness of 100 mm manufactured by Europanels Sp. z o.o. - environmental impacts (DU: 1 m²)

Indicator	Unit	A 1	A2	А3	A1-A3	C1	C2	С3	C4	D
Global Warming Potential	eq. kg CO ₂	3.21E+01	1.38E+00	5.72E-01	3.41E+01	2.85E-01	2.70E-01	3.52E+00	8.11E-01	-5.81E+00
Greenhouse gas potential - fossil	eq. kg CO ₂	3.17E+01	1.38E+00	5.67E-01	3.37E+01	3.72E-02	2.69E-01	2.72E+00	8.11E-01	-5.68E+00
Greenhouse gas potential - biogenic	eq. kg CO ₂	2.88E-01	3.18E-03	3.67E-03	2.95E-01	2.38E-04	9.21E-04	7.98E-01	3.53E-05	-1.27E-01
Global warming potential - land use and land use change	eq. kg CO₂	1.69E-02	6.99E-04	1.99E-04	1.78E-02	1.31E-05	1.06E-04	3.11E-04	7.00E-06	-6.02E-03
Stratospheric ozone depletion potential	eq. kg CFC 11	1.71E-05	2.28E-07	1.00E-05	2.73E-05	7.18E-10	6.24E-08	3.36E-08	8.82E-10	5.45E-08
Soil and water acidification potential	eq. mol H+	1.59E-01	1.64E-02	6.33E-03	1.82E-01	3.97E-04	1.09E-03	2.44E-03	1.61E-04	-1.67E-02
Eutrophication potential - freshwater	eq. kg P	6.67E-01	7.83E-05	1.03E-03	6.68E-01	6.80E-05	1.81E-05	1.32E-04	1.65E-06	-3.39E-03
Eutrophication potential - seawater	eq. kg N	9.96E-02	4.29E-03	8.64E-04	1.05E-01	5.65E-05	3.30E-04	9.49E-04	1.67E-04	-4.52E-03
Eutrophication potential - terrestrial	eq. mol N	2.54E+02	4.73E-02	7.38E-03	2.54E+02	4.84E-04	3.60E-03	8.25E-03	7.78E-04	-4.40E-02
Potential for photochemical ozone synthesis	eq. kg NMVOC	1.51E-01	1.32E-02	2.20E-03	1.66E-01	1.36E-04	1.10E-03	2.35E-03	2.45E-04	-1.95E-02
Potential for depletion of abiotic resources - non-fossil resources	eq. kg Sb	6.22E-02	3.80E-06	8.24E-07	6.22E-02	5.41E-08	9.55E-07	8.79E-06	4.15E-08	1.42E-04
Abiotic depletion potential - fossil fuels	MJ	5.51E+02	1.94E+01	9.32E+00	5.79E+02	6.11E-01	4.00E+00	3.74E+00	2.19E-01	-8.03E+01
Water deprivation potential	eq. m³	2.13E+01	8.02E-02	1.90E-01	2.16E+01	1.24E-02	1.85E-02	1.16E-01	2.27E-02	-3.19E+00

Table 5. Life cycle assessment (LCA) results for sandwich panels with PU core about density of 37 kg/m 3 and thickness of 100 mm manufactured by Europanels Sp. z o.o. - additional impacts indicators (DU: 1 m 2)

Indicator	Unit	A 1	A2	А3	A1-A3	C1	C2	C3	C4	D
Particulate matter	disease incidence	INA	INA	INA	INA	INA	INA	INA	INA	INA
Potential human exposure efficiency relative to U235	eg. kBq U235	INA	INA	INA	INA	INA	INA	INA	INA	INA
Potential comparative toxic unit for ecosystems	CTUe	INA	INA	INA	INA	INA	INA	INA	INA	INA
Potential comparative toxic unit for humans (cancer effects)	CTUh	INA	INA	INA	INA	INA	INA	INA	INA	INA
Potential comparative toxic unit for humans (non-cancer effects)	CTUh	INA	INA	INA	INA	INA	INA	INA	INA	INA
Potential soil quality index	dimensionless	INA	INA	INA	INA	INA	INA	INA	INA	INA

Table 6. Life cycle assessment (LCA) results for sandwich panels with PU core about density of 37 kg/m³ and thickness of 100 mm manufactured by Europanels Sp. z o.o. - environmental aspects related to resource use (DU: 1 m²)

Indicator	Unit	A 1	A2	А3	A1-A3	C1	C2	C3	C4	D
Consumption of renewable primary energy - excluding renewable primary energy sources used as raw materials	MJ	3.18E+01	2.40E-01	6.74E-01	3.27E+01	4.43E-02	5.74E-02	-8.15E+00	3.73E-03	-4.28E+00
Consumption of renewable primary energy resources used as raw materials	MJ	1.61E+00	0.00E+00	0.00E+00	1.61E+00	0.00E+00	0.00E+00	8.17E+00	0.00E+00	0.00E+00
Total consumption of renewable primary energy resources	MJ	3.26E+01	2.40E-01	6.74E-01	3.35E+01	4.43E-02	5.74E-02	2.95E-01	3.73E-03	-4.28E+00
Consumption of non-renewable primary energy - excluding renewable primary energy sources used as raw materials	MJ	4.29E+02	1.94E+01	9.85E+00	4.58E+02	6.47E-01	4.00E+00	-2.65E+01	-1.95E+01	-8.03E+01
Consumption of non-renewable primary energy resources used as raw materials	MJ	9.97E+01	0.00E+00	0.00E+00	9.97E+01	0.00E+00	0.00E+00	2.84E+01	1.97E+01	0.00E+00
Total consumption of non-renewable primary energy resources	MJ	5.51E+02	1.94E+01	9.87E+00	5.80E+02	6.47E-01	4.00E+00	3.85E+00	2.19E-01	-8.03E+01
Consumption of secondary materials	kg	8.72E+00	7.20E-03	7.56E-04	8.73E+00	4.93E-05	1.34E-03	4.84E-03	1.69E-04	-1.33E+01
Consumption of renewable secondary fuels	MJ	9.29E-03	5.78E-05	4.12E-06	9.35E-03	2.70E-07	1.48E-05	3.09E-04	1.58E-06	-2.50E-04
Consumption of non-renewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Net consumption of freshwater resources	m ³	5.19E-01	2.07E-03	3.05E-03	5.24E-01	1.99E-04	5.03E-04	2.37E-03	1.45E-04	-9.69E-02

Table 7. Life cycle assessment (LCA) results for sandwich panels with PU core about density of 37 kg/m³ and thickness of 100 mm manufactured by Europanels Sp. z o.o.- environmental information describing waste categories (DU: 1 m²)

Indicator	Unit	A1	A2	А3	A1-A3	C1	C2	С3	C4	D
Hazardous waste. neutralized	kg	2,32E+00	1,87E-02	1,03E-03	2,34E+00	1,26E-07	4,49E-03	6,84E-02	1,73E-03	8,64E-01
Non-hazardous waste neutralised	kg	3,62E+01	3,39E-01	5,52E-02	3,66E+01	3,61E-03	7,97E-02	2,88E+00	8,37E-03	-1,26E+01
Radioactive waste	kg	5,81E-04	9,84E-05	8,09E-06	6,88E-04	5,25E-07	2,75E-05	1,58E-05	2,58E-07	-3,34E-04
Components for reuse	kg	3,92E-07	0,00E+00	1,18E-01	1,18E-01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materials for recycling	kg	1,83E-02	6,06E-04	5,65E-05	1,90E-02	3,71E-06	1,24E-05	1,22E+01	1,48E-06	-2,38E-03
Materials for energy recovery	kg	1,69E-05	4,44E-07	9,68E-03	9,69E-03	5,19E-09	1,00E-07	3,87E-07	1,59E-08	4,19E-05
Energy exported	MJ	1,42E+00	1,61E-02	2,70E-02	1,46E+00	1,77E-03	4,44E-03	8,65E-02	7,50E-05	-3,20E-01

Verification

The process of verification of this EPD is in accordance with ISO 14025 and ISO 21930. After verification, this EPD is valid for a 5-year-period. EPD does not have to be recalculated after 5 years, if the underlying data have not changed significantly.

The basis for LCA analysis was EN 15804+A2 and ITB PCR A
Independent verification company disperts ICO 44005 (authorized 0.4.2.)
Independent verification corresponding to ISO 14025 (subclause 8.1.3.)
x external internal
External verification of EPD: Halina Prejzner, PhD Eng
LCA, LCI audit and input data verification: Mateusz Kozicki, PhD
Verification of LCA: Michał Piasecki, PhD. DSc. Eng

Note 1: The declaration owner has the sole ownership, liability and responsibility for the information provided and contained in EPD. Declarations within the same product category but from different programmes may not be comparable. Declarations of construction products may not be comparable if they do not comply with EN 15804 + A2. For further information about comparability, see EN 15804 + A2 and ISO 14025. Depending on the application, a corresponding conversion factor such as the specific weight per surface area must be taken into consideration.

Note 2: ITB is a public Research Organization and Notified Body (EC Reg. no 1488) to the European Commission and to other Member States of the European Union designated for the tasks concerning the assessment of building products' performance. ITB acts as the independent, third-party verification organization (17065/17025 certified). ITB-EPD program is recognized and registered member of The European Platform – Association of EPD program operators and ITB-EPD declarations are registered and stored in the international ECO-PORTAL.

Normative references

- ITB PCR A. v. 1.6 General Product Category Rules for Construction Products
- EN 14509: 2013-12 Self-supporting double skin metal faced insulating panels Factory made products
 Specifications
- ISO 14025:2006. Environmental labels and declarations Type III environmental declarations Principles and procedures
- ISO 21930:2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services
- ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- ISO 15686-1:2011 Buildings and constructed assets Service life planning Part 1: General principles and framework
- ISO 15686-8:2008 Buildings and constructed assets Service life planning Part 8: Reference service life and service-life estimation
- ISO 20915:2018 Life cycle inventory calculation methodology for steel products
- EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations –
 Core rules for the product category of construction products
- ISO 14067:2018 Greenhouse gases Carbon footprint of products Requirements and guidelines for quantification
- EN 15942:2012 Sustainability of construction works Environmental product declarations Communication format business-to-business
- KOBiZE Emissions (CO₂. SO₂. NO_x. CO and total dust) from electricity, 2023

Thermal Physics, Acoustics and Environment Department
02-656 Warsaw, Ksawerów 21

CERTIFICATE № 625/2024 of TYPE III ENVIRONMENTAL DECLARATION

Products:

Sandwich panels with PU core

Manufacturer:

Europanels Sp. z o.o.

Inflancka 5/81, 00-189 Warsaw, Poland

confirms the correctness of the data included in the development of Type III Environmental Declaration and accordance with the requirements of the standard

EN 15804+A2

Sustainability of construction works.

Environmental product declarations.

Core rules for the product category of construction products.

This certificate, issued on 22rd April 2024 is valid for 5 years or until amendment of mentioned Environmental Declaration

Head of the Thermal Physic, Acoustics /and Environment Department

Ágnieszka Winkler-Skalna, PhD

TOTAL SALVE CHNIKI SOUDOWLAND ON THE CHNIKI SO

Deputy Director for Research and Innovation

Krzysztof Kuczyński, PhD

Warsaw, April 2024